Kela 2 Gasfield,Faults,Geomechanics,Activity,Stress field,Water invasion,"/> 塔里木盆地克拉2气田断裂地质力学活动性对水侵的影响

天然气地球科学

• 天然气开发 • 上一篇    下一篇

塔里木盆地克拉2气田断裂地质力学活动性对水侵的影响

江同文,张辉,王海应,尹国庆,肖香姣   

  1. 中国石油塔里木油田分公司,新疆 库尔勒 841000
  • 收稿日期:2017-06-21 修回日期:2017-09-07 出版日期:2017-11-10 发布日期:2017-11-10
  • 通讯作者: 张辉(1980-),男,青海湟中人,高级工程师,博士,主要从事油气田地质力学研究. E-mail:zhh-tlm@petrochina.com.cn.
  • 作者简介:江同文(1968-),男,四川绵阳人,教授级高级工程师,博士,主要从事石油地质研究及油气田开发科研与生产管理工作.E-mail:jiangtw_tlm@petrochina.com.cn.
  • 基金资助:

    国家重大科技专项(编号:2011ZX05046);中国石油天然气股份有限公司重大科技专项(编号:2014E-2104)联合资助.

Effects of faults geomechanical activity on water invasion in Kela 2 Gasfield,Tarim Basin

Jiang Tong-wen,Zhang Hui,Wang Hai-ying,Yin Guo-qing,Xiao Xiang-jiao
 
  

  1. PetroChina Tarim Oilfield Company,Korla 841000,China
  • Received:2017-06-21 Revised:2017-09-07 Online:2017-11-10 Published:2017-11-10

摘要:

中国陆相最大天然气田——克拉2气田经过10余年的高速开发后,目前面临气井快速见水和气水界面非均匀抬升等问题。为进一步明确复杂构造背景下的高压气田水侵机理,开展了气田内部基于断裂的地质力学活动性及其与气井见水之间的关联性研究。将气田四维地应力场建模和三维断裂力学分析相结合,建立了随气田开发的断裂力学活动性预测模型,研究了断裂活动性对气田水侵的影响。结果表明:①气井见水与井旁断裂力学特征变化有较好的关联性,随着气藏开采及现今地应力场的动态变化,断裂面受力状态也随之改变,从而使断裂带内部渗透性变强或变弱。②随气藏地层压力的下降,若井旁断层和裂缝活动性增加或保持较好,则气井见水较早,气水界面抬升较快。③由于气田内部应力场和断裂分布均较复杂,因此不同构造部位的断裂活动性差异较大,从而造成不同位置气水界面抬升不均匀且相差较大。研究进一步明确了克拉2气田的水侵机理,并利用断裂地质力学活动性指数将气藏划分为3个见水风险区,为气田开发方案优化提供依据。
 

关键词: 克拉2气田, 断裂, 地质力学, 活动性, 地应力场, 水侵

Abstract:

After more than ten years high-speed development,the most productive continental gasfield in China,Kela 2 Gasfield is now facing challenges associated with water breakthrough in gas well and heterogeneous water invasion in the field.To further understand the water invasion mechanism of the high pressure gasfield under complex tectonic setting,an investigation of faults geomechanical activity was conducted to investigate the relationship between variation of faults mechanical activity and water breakthrough of gas well.The faults geomechanical activity prediction model was established based on the combination of modeling of four dimensional stress field and 3D faults mechanical analysis to research its effects on water invasion in this field.The results are shown:(1)There is a good correlation between water breakthrough in gas well and faults mechanical characteristics.With the development of gas reservoir,dynamic variation of stress field led to change of stress state on faults’ planes,so that the permeability of the faults zone would be able to become stronger or weaker.(2)With the depletion of gas reservoir,the gas wells near the faults with higher geomechanical activity would produce water earlier and the gas-water interface would rise faster.(3)Because the distribution of stress field and faults in the reservoir are complex,there are great differences in the faults mechanical activity on different location of structure,which result in the uplift of gas-water interface being greatly different and inhomogeneous in the reservoir.The research further clarified the mechanism of water invasion in Kela 2 Gasfield,the gas reservoir is divided into three water breakthrough risk districts based on the prediction of faults geomechanical activity to do early warning for the areas and gas wells which has the high risk of water invasion.This research provides a basis for optimizing the development program of Kela 2 Gasfield.
 

Key words: Kela 2 Gasfield')">

中图分类号: 

  • TE312

[1]Fisher Q J,Knipe R J.The permeability of faults within siliciclastic petroleum reservoirs of the North Sea and Norwegian continental shelf[J].Marine and Petroleum Geology,200,18(10):1063-1081.
[2]Sample J C,Reid M R,Tobin H J,et al.Carbonate cements indicate channeled fluid flow along a zone of vertical faults at the deformation front of the Cascadia accretionary wedge (northwest U.S.coast)[J].Geology,199,21(6):507-510.
[3]Bouvier J D,Kaars-Sijpesteijn C H,Kluesner.Three-dimensional seismic interpretation and fault sealing investigations,Nun river field,Nigeria[J].AAPG Bulletin,1989,73(1):1397-1414.
[4]Faulkner D R,Jackson C A L,Lunn R J.A review of recent developments concerning the structure,mechanics and fluid flow properties of fault zones[J].Journal of Structural Geology,2010,32(11):1557-1575.
[5]Barton C A,Zoback M D,Moos D.Fluid flow along potentially active faults in crystalline rock[J].Geology,1995,23(4):683-686.
[6]Paul P,Zoback M D,Hennings P.Fluid flow in a fractured reservoir using a geomechanically constrained fault zone damage model for reservoir simulation[J].SPE:Reservoir Evaluation and Engineering,2007,12(4):562-575.
[7]Zoback M D.Reservoir Geomechanics[M].Cambridge:Cambridge University Press,2007.
[8]Townend J,Zoback M D.How faulting keeps the crust strong[J].Geology,2000,28(5):399-402.
[9]Tamagawa T,Pollard D D.Fracture permeability created by perturbed stress fields around active faults in a fractured basement reservoir[J].AAPG Bulletin,2008,92(4):743-764.
[10]Hennings P,Allwardt P,Paul P.Relationship between fractures,fault zones,stress,and reservoir productivity in the Suban Gasfield,Sumatra,Indonesia[J].AAPG Bulletin,201,96(4):753-772.
[11]Gu Jiayu,Fang Hui,Jia Jinhua.Diagenesis and reservoir characteristics of cretaceous braided delta sandbody in Kuqa Depression,Tarim Basin[J].Acta Sedimentologica Sinica,200,19(4):517-523.
[12]Jiang Tongwen,Tang Minglong,Wang Hongfeng.Fine 3D geologic modeling of reservoirs under control of wide spacing in the Kela-2 Gasfield[J].Natural Gas Industry,2008,28(10):11-14.[江同文,唐明龙,王洪峰.克拉2气田稀井网储层精细三维地质建模[J].天然气工业,2008,28(10):11-14.]
[13]Jia Chengzao,Zhou Xinyuan,Wang Zhaoming,et al.The geology characteristics of Kela-2 Gasfield[J].Chinese Science Bulletin,200,47(S1):91-96.[贾承造,周新源,王招明,等.克拉2气田石油地质特征[J].科学通报,200,47(S1):91-96.]
[14]Zhong Dakang,Zhu Xiaomin.Reservoirs characteristics and formation mechanism of high quality reservoirs in Kela-2 Gas field[J].Natural Gas Industry,2007,27(1):8-11.[钟大康,朱筱敏.克拉2气田储层特征及优质储层形成机理[J].天然气工业,2007,27(1):8-11.]
[15]He Dengfa,Zhou Xinyuan,Yang Haijun,et al.Geological structure and its controls on giant oil and gas fields in Kuqa Depression,Tarim Basin:A clue from new shot seismic data[J].Geotectonica et Metallogenia,2009,33(1):19-32.[何登发,周新源,杨海军 等.库车坳陷的地质结构及其对大油气田的控制作用[J].大地构造与成矿学,2009,33(1):19-32.]
[16]Wang Zhaoming.Formation mechanism and enrichment regularities of Kelasu subsalt deep large gas field in Kuqa Depression,Tarim Basin[J].Natural Gas Geoscience,2014,25(2):153-166.[王招明.塔里木盆地库车坳陷克拉苏盐下深层大气田形成机制与富集规律[J].天然气地球科学,2014,25(2):153-166.]
[17]Hoyland A L,Papatzacos P,Skjveland M S.Critical rate for water coning:Correlation and analytical solution[J].Society of Petroleum Engineers Paper,1989(11):495-499.
[18]Song Zhaojie,Li Xiangfang,Li Zhiping,et al.A model for calculating critical production rates of water coning with consideration of non-Darcy flow[J].Acta Petrolei Sinica,201,33(1):106-110.[宋兆杰,李相方,李治平,等.考虑非达西渗流的底水锥进临界产量计算模型[J].石油学报,201,33(1):106-110.]
[19]Van Golf-Racht T D.Water Coning in a Fractured Reservoir[C].New Orleans,Louisiana:SPE Annual Technical Conference and Exhibition,1994.
[20]Sun Zhidao.Production characteristics and the optimization of development schemes of fractured gas reservoir with edge or bottom water[J].Petroleum Exploration and Development,200,29(4):69-71.[孙志道.裂缝性有水气藏开采特征和开发方式优选[J].石油勘探与开发,200,29(4):69-71.]
[21]Shen Weijun,Li Xizhe,Liu Xiaohua,et al.Physical simulation of water influx mechanism in fractured gas reservoirs[J].Journal of Central South University:Science and Technology,2014,45(9):3283-3284.[沈伟军,李熙喆,刘晓华 等.裂缝性气藏水侵机理物理模拟[J].中南大学学报:自然科学版,2014,45(9):3283-3284.]
[22]Jaeger J C,Cook N G W.Fundamentals of Rock Mechanics[M].First Edition.London:Chapman and Hall,1979.
[23]Zoback M D,Barton C A,Brudy M,et al.Determination of stress orientation and magnitude in deep wells[J].International Journal of Rock Mechanics and Mining Sciences,200,40(7/8):1049-1076.
[24]Prats M.Effect of burial history on the subsurface horizontal stresses of formation having different material properties[J].Society of Petroleum Engineers Journal,198,21(6):658-662.
[25]Tong Hengmao.Quantitative analysis of fault opening and sealing[J].Oil & Gas Geology,1998,19(3):215-220.[童亨茂.断层开启与封闭的定量分析[J].石油与天然气地质,1998,19(3):215-220.]
[26]Kranz R L,Frankel A D,Engelder T,et al.The permeability of whole and jointed Barre granite[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts Pergamon,1979,16(4):225-234.

[1] 赵文韬,荆铁亚,吴斌,周游,熊鑫. 断裂对页岩气保存条件的影响机制——以渝东南地区五峰组—龙马溪组为例[J]. 天然气地球科学, 2018, 29(9): 1333-1344.
[2] 董洪奎,李洪辉,杜德道,陈永权,严威,王珊. 塔里木盆地巴楚隆起吐木休克断裂带构造特征及形成演化[J]. 天然气地球科学, 2018, 29(7): 951-960.
[3] 刘小兵,温志新,王兆明,贺正军,宋成鹏. 中东扎格罗斯盆地构造演化与油气分布[J]. 天然气地球科学, 2018, 29(7): 973-981.
[4] 马德波,赵一民,张银涛,杨鹏飞,杨敏,李磊. 最大似然属性在断裂识别中的应用——以塔里木盆地哈拉哈塘地区热瓦普区块奥陶系走滑断裂的识别为例[J]. 天然气地球科学, 2018, 29(6): 817-825.
[5] 倪斌,汤良杰,李萌,宋智华. 塔里木盆地鸟山东断裂带构造特征、形成机制及油气地质意义[J]. 天然气地球科学, 2018, 29(6): 834-844.
[6] 闫成龙,王海学,付晓飞,宋宪强,吴桐,巩磊,王维安. 碎屑岩地层中逆断层内部结构演化模式及封闭性[J]. 天然气地球科学, 2018, 29(4): 529-537.
[7] 周杰,朱继田,杨金海,江汝锋,张焱,甘军,孙志鹏. 琼东南盆地深水区宝南断阶带断裂特征及天然气地质意义[J]. 天然气地球科学, 2018, 29(1): 87-95.
[8] 丁博钊,张光荣,陈康,耿玮,朱兴卉,范畅. 四川盆地高石梯地区震旦系岩溶塌陷储集体成因及意义[J]. 天然气地球科学, 2017, 28(8): 1211-1218.
[9] 康海亮,林畅松,牛成民,叶冬青,庄兴燕. 渤海西部海域沙垒田凸起古近系边缘断裂构造样式与沉积充填响应[J]. 天然气地球科学, 2017, 28(2): 254-261.
[10] 姜杉钰,康永尚,张守仁,叶建平,张兵,王金,吴见. 沁水盆地柿庄区块煤层气井排采动态影响因素分析及开发对策研究[J]. 天然气地球科学, 2016, 27(6): 1134-1142.
[11] 韩长城,林承焰,任丽华,鲁新便,魏婷,张宪国. 塔里木盆地塔河10区奥陶系断裂特征及对岩溶储层的控制作用[J]. 天然气地球科学, 2016, 27(5): 790-798.
[12] 胡勇,李熙喆,万玉金,焦春艳,徐轩,郭长敏,敬伟. 裂缝气藏水侵机理及对开发影响实验研究[J]. 天然气地球科学, 2016, 27(5): 910-917.
[13] 高岗,向宝力,任江玲,张维维,马万云,何文军. 准噶尔盆地玛湖凹陷北部—乌夏断裂带天然气成因与来源[J]. 天然气地球科学, 2016, 27(4): 672-680.
[14] 付广,张博为,历娜,王浩然. 沿断裂运移油气向两侧砂体发生侧向分流的判识方法[J]. 天然气地球科学, 2016, 27(2): 211-219.
[15] 赵海峰,蒋迪,石俊. 致密砂岩气藏缝网系统渗流力学和岩石断裂动力学[J]. 天然气地球科学, 2016, 27(2): 346-351.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!