天然气地球科学 doi: 10.11764/j.issn.1672-1926.2017.06.008

• 天然气开发 • 上一篇    下一篇

不同驱油方式CO2微观分布特征及埋存量研究

郝永卯1,韦馨林1,董承顺2   

  1. 1.中国石油大学(华东)石油工程学院,山东 青岛 266580;
    2.辽河油田工程技术处,辽宁 盘锦 124010
  • 收稿日期:2016-12-03 修回日期:2017-05-09 出版日期:2017-06-10 发布日期:2017-06-10
  • 作者简介:郝永卯(1976-),男,河北衡水人,副教授,博士,主要从事油气田开发理论与方法、CO2提高采收率与地质埋存理论与技术以及天然气水合物开采理论与技术研究.E-mail:haoyongmao@163.com.
  • 基金资助:

    国家科技重大专项(编号:2016ZX05056-001)资助.

Research on the microscopic distribution characteristics and storage capacity of CO2 with different displacement methods

Hao Yong-mao1,Wei Xin-lin1,Dong Cheng-shun2   

  1. 1.School of Petroleum Engineering,China University of Petroleum,Qingdao 266580,China;
    2.Engineering Technology Department of Liaohe Oilfield Company,Panjin 124010,China
  • Received:2016-12-03 Revised:2017-05-09 Online:2017-06-10 Published:2017-06-10

摘要:

利用高温高压微观可视化实验研究不同驱油方式下CO2的分布特征及埋存机制,并通过图像分析计算CO2的埋存潜力。实验结果表明:CO2非混相驱时,自由态CO2主要分布于模型顶部,埋存机制主要为构造埋存;CO2混相驱时,模型中上部主要聚集自由态CO2,而中下部为油气混相带,埋存机制主要为构造埋存及原油中的溶解埋存;非混相水驱交替时的自由态CO2波及区从主流线向两侧扩散,越靠近采出端扩散程度越低,并且CO2溶解于波及区内的注入水,埋存机制主要为构造埋存及水中的溶解埋存;混相水气交替和水驱后CO2混相驱时CO2的分布状况基本一致,混相态和自由态CO2基本都离散分布于模型中,同时注入水中溶有CO2,埋存机制主要为构造埋存及油水中的溶解埋存。埋存量计算结果表明,混相条件下埋存量远高于非混相条件,构造埋存是最主要的埋存机制,同时水驱后CO2混相驱的埋存量较高,说明水驱后的油藏也是CO2埋存的理想场所。

关键词: 微观实验, CO2埋存, 驱油方式, CO2分布特征, 埋存机制, 埋存量

Abstract:

The form and distribution of CO2 under different displacement methods has been studied by visualization experimental equipment with the condition of high pressure and high temperature,and the storage capacity of CO2 has also been investigated by image analysis technology.Experimental results show that,free state CO2 mainly distributed on the top of the model under the immiscible displacement,and the storage mechanism is structure and stratigraphic trapping.While under the miscible displacement it mainly distributed on the middle and upper parts of the model,and the oil and CO2 miscible zone will locate in the lower part of the model,and the storage mechanism is structure and stratigraphic trapping and dissolution trapping in the remaining oil.During the experiment of water alternating gas(WAG) displacement,the sweep area of free state CO2 spreads from the mainstream line to both sides,the diffusion degree gradually decreases from the inject end to the output end,and the CO2 is dissolved in the injected water,and the storage mechanism is structure and stratigraphic trapping,dissolution trapping in the injected water and the remaining oil.The distribution of CO2 under the WAG miscible displacement and CO2 miscible displacement after water displacement is consistent,in which the free state CO2 and miscible CO2 discretely distributed in the model,and the CO2 was dissolved in the injected water,and the storage mechanism is structure and stratigraphic trapping,dissolution trapping in the injected water and the remaining oil.The calculation of storage capacity shows that,the storage capacity under the miscible condition is higher than that under the immiscible condition,and structure trapping is the main form of CO2 storage.The storage capacity of CO2 miscible displacement after water flooding is excellent,which means the reservoir after water flooding is anideal place for CO2 storage.

Key words: Microscopic experiment, CO2 , storage, Displacement methods, CO2 distribution characteristics, Storage mechanism, Storage capacity

中图分类号: 

  • TE321

[1]Yao Zhenjie,Huang Chunxia,Duan Jingjie,et al.CO2 displacement geological storage potential evaluation of Yanchang Oilfield[J].Journal of Liaoning University of Petroleum & Chemical Technology,2016,36(3):43-45.[姚振杰,黄春霞,段景杰,等.延长油田CO2驱埋存潜力评价方法[J].辽宁石油化工大学学报,2016,36(3):43-45.]
[2]Zhang L,Wang S,Zhang L,et al.Assessment of  CO2 EOR and its geo-storage potential in mature oil reservoirs,Shengli Oilfield,China[J].Petroleum Exploration & Development,2009,36(6):737-742.
[3]Li D X,Zhang L,Liu Y M,et al.CO2-triggered gelation for mobility control and channeling blocking during CO2 flooding processes[J].Petroleum Science,2016,13(2):247-258.
[4]Xian Xuefu,Yin Hong,Zhou Junping,et al.A new experimental apparatus for fracturing shale gas reservoir to enhance permeability with supercritical carbon dioxide[J].Journal of Southwest Petroleum University:Science & Technology Edition,2015,37(3):1-8.[鲜学福,殷宏,周军平,等.页岩气藏超临界CO2 致裂增渗实验装置研制[J].西南石油大学学报:自然科学版,2015,37(3):1-8.]
[5]Saini D,Jimenez I.Evaluation of CO2-EOR and storage potential in mature oil reservoirs[J].Journal of Petroleum Science & Engineering,2014,134.
[6]Zhang Yanyu,Li Yanjie,Sun Xiaofei,et al.A new screening evaluation method for candidate reservoirs by CO2 injection miscible flooding[J].Journal of Southwest Petroleum University:Science & Technology Edition,2015,37(4):143-148.[张艳玉,李延杰,孙晓飞,等.注CO2 混相驱候选油藏筛选评价新方法[J].西南石油大学学报:自然科学版,2015,37(4):143-148.]
[7]Zhang Liang,Ren Shaoran,Zhang Yin,et al.Evaluation methods of CO2 EOR and geo-sequestration potential[J].Petroleum Geology and Oilfield Development in Daqing,2009,28(3):116-121.[张亮,任韶然,张银,等.油田CO2EOR及地质埋存潜力评估方法[J].大庆石油地质与开发,2009,28(3):116-121.]
[8]Du Jianfen,Chen Jing,Li Qiu,et al.Experimental study on micro-displacement oil for different CO2displace-ment mechanism[J].Journal of Southwest Petroleum University:Science & Technology Edition,2012,34(6):131-135.[杜建芬,陈静,李秋,等.CO2微观驱油实验研究[J].西南石油大学学报:自然科学版,2012,34(6):131-135.]
[9][KG*5/6]Liu Xuewei,Mei Shisheng,Yang Zhengming.Experimental study on micro-displacement oil for CO2 immiscible flooding[J].Special Oil & Gas Reservoirs,2006,13(3):91-93.[刘学伟,梅士盛,杨正明.CO2非混相驱微观实验研究[J].特种油气藏,2006,13(3):91-93.]
[10]Wang Ming,Du Li,Nie Fajian,et al.Microscopic visualization simulation of CO2/water alternating flooding[J].Science & Technology Review,2014,32(36):80-85.[王明,杜利,聂法健,等.高温高压CO2/水交替微观驱油机制及运移特征[J].科技导报,2014,32(36):80-85.]
[11]Chen Yanfang,Liao Xinwei,Zhao Hongjun,et al.Determination two key dissolution coefficients in calculation of CO2storage capacity[J].Science & Technology Review,2010,28(1):98-101.[陈艳芳,廖新维,赵宏军,等.计算CO2在油藏的埋存量时两个关键系数的确定[J].科技导报,2010,28(1):98-101.]
[12]Zhang L,Li X,Ren B,et al.CO2storage potential and trapping mechanisms in the H-59 block of Jilin Oilfield,China[J].International Journal of Greenhouse Gas Control,2016,49:267-280.
[13]Zhang L,Ren S,Ren B,et al.Assessment of CO2,storage capacity in oil reservoirs associated with large lateral/underlying aquifers:Case studies from China[J].International Journal of Greenhouse Gas Control,2011,5(4):1016-1021.
[14][JP3]Liu Guangqi,Ma Lianxiang,Xiang Shuguang.Handbook of Physical-chemical Properties:Inorganic Volume[M].Beijing:Chemical Industry Press,2013:66,85.[刘光启,马连湘,项曙光.化学化工物性数据手册:无机卷[M].北京:化学工业出版社,2013:66,85.]
[15]Xue H,Lu S,Fu X.Forecasting model of solubility of CH4,CO2 and N2 in crude oil[J].Oil & Gas Geology,2005,26(4):444-449.

[1] 罗超,贾爱林,何东博,郭建林,张宫,程中疆. 四川盆地广安气田须四段、须六段致密砂岩气藏气水分布对比[J]. 天然气地球科学, 2016, 27(2): 359-376.
[2] 杨少春, 潘少伟, 杨柏, 黄建廷, 段天向. 储层四维建模方法研究[J]. 天然气地球科学, 2009, 20(3): 420-424.
[3] 张枫,;李治平;凌宗发;谭振华;陈淑琴;孙新铭 . 黄骅坳陷唐家河油田四维地质建模研究[J]. 天然气地球科学, 2007, 18(6): 897-902.
[4] 朱小燕;孙卫;李建霆;刘宏义;李爱琴;刘一仓;田随良;胡建基 . 陇东城壕—南梁地区长6储层特征研究[J]. 天然气地球科学, 2007, 18(6): 903-907.
[5] 郭 凯;宋新民;杨思玉;史 静. 三角洲河口砂坝微相变差函数规律研究[J]. 天然气地球科学, 2007, 18(2): 298-302.
[6] 李少华;郭永康;李维锋;王兆峰;石小川;. SN31储层三维地质建模[J]. 天然气地球科学, 2006, 17(6): 811-814.
[7] 惠延安,王平,杨光,张萍,鲁红梅,孙芸. 油藏岩石渗透率合成方法探讨[J]. 天然气地球科学, 2004, 15(5): 564-566.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵应成,周晓峰,王崇孝,王满福,郭娟娟 . 酒西盆地青西油田白垩系泥云岩裂缝油藏特征和裂缝形成的控制因素[J]. 天然气地球科学, 2005, 16(1): 12 -15 .
[2] 任以发. 微量烃分析在井中化探录井中的应用[J]. 天然气地球科学, 2005, 16(1): 88 -92 .
[3] 付广;杨勉;. 盖层发育特征及对油气成藏的作用[J]. 天然气地球科学, 2000, 11(3): 18 -24 .
[4] 张延敏, . 1996~1999年世界天然气产量[J]. 天然气地球科学, 2000, 11(3): 44 -45 .
[5] 付广;王剑秦. 地壳抬升对油气藏保存条件的影响[J]. 天然气地球科学, 2000, 11(2): 18 -23 .
[6] . 西部天然气资源全面大开发在即[J]. 天然气地球科学, 2000, 11(1): 27 .
[7] 赵生才;. 香山科学会议第268次学术讨论会“中国煤层气资源及产业化”召开[J]. 天然气地球科学, 0, (): 6 .
[8] 王先彬;妥进才;周世新;李振西;张铭杰;闫宏;. 论天然气形成机制与相关地球科学问题[J]. 天然气地球科学, 2006, 17(1): 7 -13 .
[9] 倪金龙;夏斌;. 济阳坳陷坡折带组合类型及石油地质意义[J]. 天然气地球科学, 2006, 17(1): 64 -68 .
[10] Cramer B;Faber E;Gerling P;Krooss B M;刘全有(译). 天然气稳定碳同位素反应动力学研究――关于干燥、开放热解实验中的思考[J]. 天然气地球科学, 2002, 13(5-6): 8 -18 .