天然气地球科学

• 天然气开发 • 上一篇    下一篇

岩石水力压裂微观破裂机制

杜书恒1,2,赵晔1,2,庞姗1,2,师永民1,2   

  1. 1.北京大学地球与空间科学学院,北京 100871;2.北京大学石油与天然气研究中心,北京 100871
  • 收稿日期:2016-02-20 修回日期:2016-08-31 出版日期:2016-12-10 发布日期:2016-12-10
  • 通讯作者: 师永民(1966-),男,陕西泾阳人,研究员,主要从事地质工程一体化提高采收率研究. E-mail:sym@pku.edu.cn.
  • 作者简介:杜书恒(1994-),男,安徽定远人,博士研究生,主要从事油藏开发地质研究. E-mail:dushuheng@pku.edu.cn.
  • 基金资助:
    国家科技重大专项“大型油气田及煤层气开发”(编号:2016ZX05013005-009)资助.

Microscopic mechanism of the fracture in the rock caused by hydraulic fracturing process

Du Shu-heng1,2,Zhao Ye1,2,Pang Shan1,2,Shi Yong-min1,2   

  1. 1.School of Earth and Space Science,Peking University,Beijing 100871,China;
    2.Oil and Gas Institute,Peking University,Beijing 100871,China
  • Received:2016-02-20 Revised:2016-08-31 Online:2016-12-10 Published:2016-12-10

摘要: 基于岩石水力压裂微观破裂机制尚未被厘清的实际,以线弹性破裂理论为基础,以网格化定量模拟为手段,通过构建储层微观结构简化模型,对水力压裂缝延伸的微观过程开展模拟。依据模拟结果,对微观破裂次序、位置展开深入剖析,提出水力压裂的两种微观破裂模式,分别为沿孔喉突破的“结构破裂”和沿晶体薄弱面延伸的“本体破裂”。其中,“结构破裂”为主要破裂方式,“本体破裂”有利于增加新的渗流通道,对于提高采收率意义重大。

关键词: 孔喉结构, 水力压裂, 微观破裂, 破裂模式

Abstract: Since the microscopic mechanism of the fracture caused by hydraulic fracturing process has not been explained well,according to the linear elastic fracture theory and the gridding quantitative simulation method,through building up the simplified structure model of microscopic reservoir,simulation on microscopic laws of reservoir rocks fracture has been performed.Based on the simulation results,the micro fracture’s sequence and position have been analyzed.Two dominating modes of microscopic reservoir fracture during the hydraulic fracturing process were come up with,that is the “structure broken” which is breakthrough along the pore throats and the “body broken” which is fractured in the mineral materials.Between them the “structure broken” plays the most important role,and the "body broken" could increase the seepage channel which will play a significant role on enhancing oil recovery.

Key words: Pore throat structure, Hydraulic fracturing, Microscopic fracture, Fracture Mode

中图分类号: 

  • TE357.1

[1]Yu Hongdan,Chen Feifei,Chen Weizhong,et al.Research on permeability of fractured rock[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(supplement1):2788-2795.
[于洪丹,陈飞飞,陈卫忠,等.含裂隙岩石渗流力学特性研究[J].岩石力学与工程学报,2012,31(增刊1):2788-2795.]
[2]Biswal B,Manwart C,Hilffer R.Three-dimensional local porosity analysis of porous media[J].Physica A Statistical Mechanics & Its Applications,1998,255(3-4):221-241.
[3]Shi Xian,Chen Yuanfang,Jiang Shu,et al.Experimental study of microstructure and rock properties of shale samples[J].Chinese Journal of Rock Mechanics and Engineering,2014,32(S2):3439-3445.[时贤,程远方,蒋恕,等.页岩微观结构及岩石力学特征实验研究[J].岩石力学与工程学报,2014,32(S2):3439-3445.]
[4]Xiao Qiaolin,Tang Boming.Experimental research on mechanical properties of porous basalt[J].Science Technology and Engineering,2014,14(33):272-276.[肖巧林,唐伯明.孔隙玄武岩力学性质试验研究[J].科学技术与工程,2014,14(33):272-276.]
[5]Dong Qianqian,Ma Guowei,Xia Mingjie,et al.Crack extension process and failure behavior of marbles containing fillers[J].Journal of Beijing University of Technology,2015,41(9):1375-1382.[董茜茜,马国伟,夏明杰,等.含充填物的大理岩裂隙扩展过程及破坏特性[J].北京工业大学学报,2015,41(9):1375-1382.]
[6]Deng Jixin,Zhou Hao,Wang Huan,et al.The influence of pore structure in reservoir sandstone on dispersion properties of elastic waves[J].Chinese Journal of Geophysics,2015,58(9):3389-3400.[邓继新,周浩,王欢,等.基于储层砂岩微观孔隙结构特征的弹性波频散响应分析[J].地球物理学报,2015,58(9):3389-3400.]
[7]Tang C A,Xu T,Yang T H,et al.Numerical investigation of the mechanical behavior of rock under confining pressure and pore pressure[J].International Journal of Rock Mechanics & Mining Sciences,2004,41(41):421-422.
[8]Tang Chun’an.Effect of testing machine stiffness and frequency characteristic of recording system on measurements of complete load displacement relations for rock specimens[J].Chinese Journal of Rock Mechanics and Engineering,1987,6(3):265-276.[唐春安.试验机刚性与测量系统频率响应对测试岩石荷载_位移关系的影响[J].岩石力学与工程学报,1987,6(3):265-276.]
[9]Ren Jianxi,Ge Xiurun,Pu Yibin,et al.Primary study of real- time ct testing of unloading damage evolution law of rock[J].Chinese Journal of Rock Mechanics and Engineering,2000,19(6):697-701.[任建喜,葛修润,蒲毅彬,等.岩石卸荷损伤演化机理CT实时分析初探[J].岩石力学与工程字报,2000,19(6):697-701.]
[10]Ren Jianxi,Ge Xiurun,Pu Yibin,et al.Real-time CT test on the Meso-damage evolution of rock under uniaxial compression[J].China Civil Engineering Journal,2000,33(6):99-104.[任建喜,葛修润,蒲毅彬,等.岩石单轴细观损伤演化特性的CT实时分析[J].土木工程学报,2000,33(6):99-104.]
[11]Ren Jianxi,Yang Gengshe,Ge Xiurun,et al.Real-time CT test of meso-damage evolution law of jointed granite on unloading confining pressure[J].Journal of Chang’a n University:Natural Science Edition,2002,22(6):45-49.[任建喜,杨更社,葛修润.裂隙花岗岩卸围压作用下损伤破坏机理CT检测[J].长安大学学报:自然科学版,2002,22(6):45-49.]
[12]Ren Jianxi.Characteristics of loess slope evolution based on concept of self-organization[J].Shuili Xuebao,2002,33(1):10-14.[任建喜.单轴压缩下岩石蠕变损伤扩展细观机理CT实时试验[J].水利学报,2002,33(1):10-14.]
[13]Chen Yong.Application of acoustic emission techniques to rock mechanics research[J].Chinese Journal of Geophysics,1977,20(4):312-322.[陈颙.岩石声发射技术在岩石力学研究中的应用[J].地球物理学报,1977,20(4):312-322.]
[14]Geng Naiguang.The simulated experimental studies on cause of thermal infrared precursor of earthquakes[J].Earthquake,1998,18(1),83-88.[耿乃光.热红外震兆成因的模拟实验研究[J].地震,1998,18(1),83-88.]
[15]Wingquist C F.Elastic moduli of rock at elevated temperatures[J].BurMines,1969,7269-7291.
[16]Xiong Deguo,Zhao Zhongming,Su Chengdong,et al.Experimental study of effect of water-saturated state on mechanical properties of rock in coal measure strata[J].Chinese Journal of Rock Mechanics and Engineering,2011,30(5):98-1006.[熊德国,赵忠明,苏承东,等.饱水对煤系地层岩石力学性质影响的试验研究[J].岩石力学与工程学报,2011,30(5):98-1006.]
[17]Jiang Yongdong,Yan Zongling,Liu Yuanxue,et al.Experimental study on mechanical properties of rock under the conditions of wet and dry cycles[J].China Mining Magazine,2011,20(5):104-110.[姜永东,阎宗岭,刘元雪,等.干湿循环作用下岩石力学性质的实验研究[J].中国矿业,2011,20(5):104-110.]
[18]Xu Jiang,Li He,Xian Xuefu,et al.Experiment on development process of sandstone microscopic fracture under uniaxial stress state[J].Mechanics in Engineering,1986,8(4):16-20.[许江,李贺,鲜学福,等.对单轴应力状态下砂岩微观断裂发展全过程的实验研究[J].力学与实践,1986,8(4):16-20.]
[19]Adams M,Sines G.Crack extension from flaws in brittle material subjected to compression[J].Tectonophysics,1978,49(1-2):97-118.
[20]Brady BHGs Brown ET.Rock Mechanics[M].2nd ed.London:Chapman&Hall,1993.
[21]Okstuka K,Data H.Fracture process zone in concrete tension specimen[J].Engineering Fracture Mechanics,2000,65(65):111-131.
[22]Wawersik W R,Fairhurst C.A study of brittle rock fracture in laboratory compression experiments[J].International Journal of Rock Mechanics & Mining Science & Geomechanics Abstracts,1970,7(5):561-575.
[23]Zhu Dehan,Zhang Wei,Zhu Hejun,et al.3-D rupture dynamics of dipping faults with curvilinear-grid finite difference method[J].Acta Seismologica Sinica,2010,32(4): 401-411.
[朱德瀚,张伟,祝贺君,等.利用曲线网格有限差分方法研究三维倾斜断层的破裂动力学[J].地震学报,2010,32(4):401-411.]
[24]Blandford G E,Ingraffea A R,Liggett J A.Two-dimensional stress intensity factor computations using the boundary element method[J].International Journal for Numerical Methods in Engineering,1981,17(3):387-404.
[25]Wang Yongjia,Xing Jibo.Discrete Element Method and Lagrangian Element Method and Their Applications in Geomechanics[M].Shenyang:Northeast institute of technology press,1991.[王泳嘉,邢纪波.离散单元法及其在岩土工程中的应用[M].沈阳:东北工学院出版社,1991.]
[26]Pei Juemin.Numerical Man Ifold Method an Discontinuous Deformation Analysis[J].Chinese Journal of Rock Mechanics and Engineering,1997,16(3):279-292.[裴觉民.数值流形方法与非连续变形分析[J].岩石力学与工程学报,1997,16(3):279-292.]
[27]Jan G M.van Mier,Fracture Processes of Concrete[M].New York:CRC Press,1997.
[28]Fakhimi A,Carvalho F,Ishida T,et al.Simulation of failure around a circular opening in rock[J].International Journal of Rock Mechanics & Mining Sciences,2002,39(02):507-515.
[29]Du Shuheng,Guan Ping,Shi Yongmin,et al.New fracturing criterion on the low permeability sandstone reservoir[J/OL].Earth Science Frontiers,http://www.cnki.net/kcms/detail/11.3370.P.20160717.2036.032.html.[杜书恒,关平,师永民,等.低渗透砂岩储层可压裂性新判据[J/OL].地学前缘,http://www.cnki.net/kcms/detail/11.3370.P.20160717.2036.032.html.]
[30]Du Shuheng,Guan Ping,Xu Qi,et al.Nonlinear characterization method of fracturing stimulation scale on heterogeneous reservoir by combining logging and seismic data[J].Acta Scientiarum Naturalium Universitatis Pekinensis,2016,52(2):241-248.[杜书恒,师永民,徐启,等.井震联合非均质储层改造规模的非线性表征方法[J].北京大学学报:自然科学版,2016,52(2):241-248.]
[31]Shuheng Du,Yongmin Shi,Ping Guan,and Yuguang Zhang.New inspiration on effective development of tight reservoir in secondary exploitation by using rock mechanics method.[J].Energy Exploration & Exploitation,2016,34(1):1-16.
[32]Shuheng Du,Yongmin Shi,Xiangqian Bu,Wenqi Jin and Guoquan Mu.New expression of the changing stress field in low-permeability reservoir and its application in secondary exploitation[J].Energy Exploration & Exploitation,2015,33(4):491-514.
[33]Du Shuheng,Shi Yongmin.New Forecasting Method on ideal water flooding swept volume after hydraulic fracturing in low permeability oil & gas reservoir[J].Natural Gas Geoscience,2015,26(10):1956-1962.[杜书恒,师永民.低渗油气藏水力压裂理想水驱波及范围预测新方法[J].天然气地球科学,2015,26(10):1956-1962.]
[34]Du Shuheng,Shi Yongmin,Guan Ping,et al.Quantitative prediction of the fracture in Fuyu heterogeneous low permeability reservoir in Songliao Basin[J].Earth Science Frontiers,2017:in press.[杜书恒,师永民,关平,等.松辽盆地扶余低渗储层压裂缝定量预测[J].地学前缘,2017:待刊.]
[35]Du Shuheng,Liang Yaohuan,Shi Yongmin,et al.Changing mechanism of the Poisson’s ratio of the sand and mudstone in Qijiagulong Sag in Songliao Basin[J].Earth Science Frontiers,2017:in press.[杜书恒,梁耀欢,师永民,等.松辽盆地齐家_古龙凹陷油藏泊松比变化的岩石学机制[J].地学前缘,2017:待刊.]
[36]Jin Wenqi,Du Shuheng,Lu Xiangwei,et al.Revelation on remaining oil excavation from stress interlayer division in special low permeability reservoir:Take Yanchang Formation of Baiyushan reservoir in Ordos Basin as an example[J].Acta Scientiarum Naturalium Universitatis Pekinensis,2016,52(6):1034-1040.[靳文奇,杜书恒,路向伟等.基于应力隔夹层划分的特低渗储层剩余油挖潜——以鄂尔多斯盆地白于山地区延长组储层为例[J].北京大学学报:自然科学版,2016,52(6):1034-1040.]
[37]Bu Xiangqian,Du Shuheng,Shi Yongmin,et al.Impact on mechanical properties of rock mass with pressure field’s change in low-permeability reservoirs[J].Acta Scientiarum Naturalium Universitatis Pekinensis,2016,51(5):850-856.[卜向前,师永民,杜书恒,等.低渗透油藏压力场变化对岩体力学性质的影响[J].北京大学学报:自然科学版,2016,51(5):850-856.]
[38]Wu Wenjuan,Shi Yongmin,Wang Xiaojun et al.Theory and application of numerical simulation of asymmetric hydraulic fractures in ultra-low permeability reservoirs[J].Acta Scientiarum Naturalium Universitatis Pekinensis,2012,48(6):895-901.[吴文娟,师永民,王小军,等.超低渗油气藏非对称压裂数值模拟理论及应用[J].北京大学学报:自然科学版,2012,48(6):895-901.]
[39]Wang Youjing,Song Xinmin,Tian Changbin.Dynamic fractures are an emerging new development geological attribute in water-flooding development of ultra-low permeability reservoirs[J].Petroleum Exploration and Development,2015,42(2):222-228.[王友净,宋新民,田昌炳,等.动态裂缝是特低渗透油藏注水开发中出现的新的开发地质属性[J].石油勘探与开发,2015,42(2):222-228.]

[1] 陈立超, 王生维, . 煤岩弹性力学性质与煤层破裂压力关系[J]. 天然气地球科学, 2019, 30(4): 503-511.
[2] 曾凡辉, 唐波涛, 王涛, 郭建春, 肖勇军, 张守仁. 考虑渗滤效应的压裂裸眼井破裂压力预测模型[J]. 天然气地球科学, 2019, 30(4): 549-556.
[3] 汪道兵,葛洪魁,宇波,文东升,周珺,韩东旭,刘露. 页岩弹性模量非均质性对地应力及其损伤的影响[J]. 天然气地球科学, 2018, 29(5): 632-643.
[4] 王志荣,贺平,郭志伟,陈玲霞,徐培远. 水力压裂条件下“三软”煤层压裂渗透模型及应用[J]. 天然气地球科学, 2017, 28(3): 349-355.
[5] 付海峰, 刘云志, 梁天成, 翁定为, 卢拥军, 修乃岭, . 四川省宜宾地区龙马溪组页岩水力裂缝形态实验研究[J]. 天然气地球科学, 2016, 27(12): 2231-2236.
[6] 尚校森,丁云宏,杨立峰,卢拥军,鄢雪梅,王永辉. 基于结构弱面及缝间干扰的页岩缝网压裂技术[J]. 天然气地球科学, 2016, 27(10): 1883-1891.
[7] 白瑞婷,李治平,南珺祥,赖枫鹏,李洪,韦青. 考虑启动压力梯度的致密砂岩储层渗透率分形模型[J]. 天然气地球科学, 2016, 27(1): 142-148.
[8] 沈安江,佘敏,胡安平,潘立银,陆俊明. 海相碳酸盐岩埋藏溶孔规模与分布规律初探[J]. 天然气地球科学, 2015, 26(10): 1823-1830.
[9] 王宇,李晓,王金波,郑博,张搏,赵志恒. 水力压裂中的应力阴影效应与数值计算[J]. 天然气地球科学, 2015, 26(10): 1941-1950.
[10] 杜书恒,师永民. 低渗油气藏水力压裂理想水驱波及范围预测新方法[J]. 天然气地球科学, 2015, 26(10): 1956-1962.
[11] 张小东,张硕,杨艳磊,张鹏,魏高洋. 基于分形理论的煤储层水力压裂裂缝数值模拟[J]. 天然气地球科学, 2015, 26(10): 1992-1998.
[12] 王志荣,韩中阳,李树凯,胡向志. “三软”煤层注水压裂增透机理及瓦斯抽采施工参数确定[J]. 天然气地球科学, 2014, 25(5): 739-746.
[13] 程远方,常鑫,孙元伟,王欣. 基于断裂力学的页岩储层缝网延伸形态研究[J]. 天然气地球科学, 2014, 25(4): 603-611.
[14] 谢维扬, 李晓平. 水力压裂缝导流的页岩气藏水平井稳产能力研究[J]. 天然气地球科学, 2012, 23(2): 387-392.
[15] 何文祥, 杨乐, 马超亚, 郭玮. 特低渗透储层微观孔隙结构参数对渗流行为的影响——以鄂尔多斯盆地长6储层为例[J]. 天然气地球科学, 2011, 22(3): 477-481,517.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘洪军;贾亚妮;李振宏;郑聪斌;. 岩溶盆地中微隆起带的存在及意义――以鄂尔多斯盆地奥陶纪岩溶古地貌为例[J]. 天然气地球科学, 2006, 17(4): 490 -493 .
[2] 许辉群;桂志先;. 利用测井约束地震反演预测砂体展布――以YX地区砂四段三砂组砂体为例[J]. 天然气地球科学, 2006, 17(4): 547 -551 .
[3] 肖芝华;胡国艺;李志生. 封闭体系下压力变化对烃源岩产气率的影响[J]. 天然气地球科学, 2007, 18(2): 284 -288 .
[4] 张顺存,;王凌;石新璞;方琳浩,;董文举,;孔玉华 . 准噶尔盆地腹部陆西地区石炭系火山岩储层的物性特征及其与电性的关系[J]. 天然气地球科学, 2008, 19(2): 198 -203 .
[5] 吴向华,程同锦,邓天龙 . 油气化探分析检测技术现状及发展趋势[J]. 天然气地球科学, 2005, 16(1): 78 -81 .
[6] 刘文汇;黄第藩;熊传武;徐永昌;. 成烃理论的发展及国外未熟―低熟油气的分布与研究现状[J]. 天然气地球科学, 1999, 10(1-2): 1 -22 .
[7] 胡雄;李延钧;陈新领;江波;马立协;付晓文;王强;梁艳;. 柴北缘马海地区油气全烃地球化学特征与成因[J]. 天然气地球科学, 2005, 16(5): 612 -616 .
[8] 吴时国;袁圣强;. 世界深水油气勘探进展与我国南海深水油气前景[J]. 天然气地球科学, 2005, 16(6): 693 -699 .
[9] 朱小燕;孙卫;李建霆;刘宏义;李爱琴;刘一仓;田随良;胡建基 . 陇东城壕—南梁地区长6储层特征研究[J]. 天然气地球科学, 2007, 18(6): 903 -907 .
[10] 朱维耀;宋洪庆; 何东博;王明 ;贾爱林;胡永乐 . 含水低渗气藏低速非达西渗流数学模型及产能方程研究[J]. 天然气地球科学, 2008, 19(05): 685 -689 .