天然气地球科学

• 天然气开发 • 上一篇    下一篇

水平井平行裂缝间诱导应力干扰机制的数值模拟研究

李旺1,2,3,李连崇1,2,唐春安1,2   

  1. 1.大连理工大学海岸和近海工程国家重点实验室,辽宁 大连 116024;
    2.大连理工大学岩石破裂与失稳研究中心,辽宁 大连 116024;
    3.河北九易庄宸科技股份有限公司,河北 石家庄 050081
  • 收稿日期:2016-03-16 修回日期:2016-06-17 出版日期:2016-11-10 发布日期:2016-11-10
  • 作者简介:李旺(1990-),男,河北定州人,硕士研究生,主要从事水力压裂数值分析研究. E-mail:liwangdlut@foxmail.com.
  • 基金资助:
    国家自然科学基金项目(编号:51479024)资助.

Numerical simulation research on mechanism of induced stressperturbation between parallel fractures in horizontal wells

Li Wang1,2,3,Li Lian-chong1,2,Tang Chun-an1,2   

  1. 1.State Key Laboratory of Coastal and Offshore Engineering,Dalian University of Technology,Dalian 116024,China;
    2.Center for Rock Instability and Seismicity Research,Dalian University of Technology,Dalian 116024,China;
    3.Hebei Jiu Yi Zhuang Chen Technology Co.Ltd.,Shijiazhuang 050081,China
  • Received:2016-03-16 Revised:2016-06-17 Online:2016-11-10 Published:2016-11-10

摘要: 水平井平行裂缝间的诱导应力场相互叠加,造缝机理复杂化。应用数值模拟方法,对多平行裂缝诱导应力相互干扰的机制进行研究。首先对预制单裂缝在垂直和平行裂缝方向上诱导应力的数值解和解析解进行对比,结果表明垂直裂缝表面方向的诱导应力相对平行裂缝表面的诱导应力要大。其次对2条预制平行裂缝及2条同步扩展裂缝周边的诱导应力变化规律进行研究,结果表明小裂缝间距、长裂缝和小主应力差更有利于主应力反转和网状裂缝的形成。最后研究了3条同步扩展的平行裂缝的几何形态,研究表明较小缝间距和较大的水平应力差异系数会造成中间裂缝很难起裂或起裂后迅速止裂,不易形成有效裂缝。较小的主应力比值有利于裂缝转向,产生沿原始最小主应力方向的分支裂缝,更有利于在页岩储层中形成复杂裂缝网络。在合适的地应力条件和缝间距下,中间裂缝能突破“扩展抑制期”而进入“二次扩展期”。

关键词: 岩石力学, 应力干扰, 诱导应力, 平行裂缝, 水平井, 裂缝干扰

Abstract: The stress fields induced by parallel fractures of horizontal wells overlap on each other,making the initiation and extension of fractures more complicated.A numerical simulation is carried out to study the mechanism of induced stress perturbation between multiple parallel fractures.A comparison of the theoretical solution and numerical results of the induced stress both parallel and normal to the fracture is made firstly.The calculated results indicate that the additional stress is always higher in the direction perpendicular to the fracture than in the direction parallel to the fracture.Secondly,the stress distribution of two prefabricated fractures and two synchronously extended fractures is discussed.It is found that the small fracture spacing,long fracture length and small principal stress difference are conducive to the appearance of stress-reversal region and complex hydraulic fracture network.Lastly,the geometry of three synchronously extended fractures is analyzed,and the results show that in the case of small fracture spacing and big horizontal stress difference coefficient,the middle fracture propagates more difficultly or even stop propagating soon after initiation.The small principal stress ratio is advantageous to the appearance of branching cracks parallel to the direction of original minimum principal stress direction,thus the possibility of complex fractures in the reservoir formation by the subsequent hydraulic fracturing is greater.Under appropriate fracture spacing and in-situ stress condition,the middle fracture can overcome the “extension inhibition period” and step into the “secondary extension period”.

Key words: Rock mechanics, Stress perturbation, Induced stress, Parallel fractures, Horizontal wells, Crack interference

中图分类号: 

  • TE355.6
[1]Wang Weifeng,Liu Peng,Chen Chen,et al.The study of shale gas reservoir theory and resources evaluation[J].Nartural Gas Geoscience,2013,24(3):429-438.[王伟锋,刘鹏,陈晨,等.页岩气成藏理论及资源评价方法[J].天然气地球科学,2013,24(3):429-438.]
[2]Zheng Junwei,Sun Deqiang,Li Xiaoyan,et al.Advances in exploration and exploitation technologies of shale gas[J].Nartural Gas Geoscience,2011,22(3):511-517.[郑军卫,孙德强,李小燕,等.页岩气勘探开发技术进展[J].天然气地球科学,2011,22(3):511-517.]
 [3]Sneddon I N.The distribution of stress in the neighbourhood of a crack in an elastic solid[J].Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences,1946,187(1009):229-260.
[4]Sneddon I N,Elliott HA.The opening of a griffith crack under internal pressure[J].Quarterly of Applied Mathematics,1946,4(3):262-267.
[5]Weng Dingwei,Yan Xingming,Lu Yongjun,et al.Optimization and realization of stress interference in tight oil and gas reservoir[J].Journal of China University of Mining & Technology,2014,43(4):639-645.[翁定为,严星明,卢拥军,等.考虑应力干扰的致密油气压裂设计及实现方法[J].中国矿业大学学报,2014,43(4):639-645.]
[6]Zhang Guanqing,Chen Mian,Yao Fei,et al.Study on optimal re-fracturing timing in anisotropic formation and its influencing factors[J].Acta Petrolei Sinica,2008,29(6):885-893.[张广清,陈勉,姚飞,等.各向异性地层重复压裂最优时机及影响因素分析[J].石油学报,2008,29(6):885-893.]
[7]Zeng Yuchen.Research and Application of Refracturing Technogies[D].Chengdu:Southwest Petroleum Institute,2005.[曾雨辰.转向重复压裂技术研究与应用[D].成都:西南石油学院,2005.]
[8]Guo Jianchun,Yin Jian,Zhao Zhihong.Feasibility of formation of complex fractures under cracks interference in shale reservoir fracturing[J].Chinese Journal of Rock Mechanics and Engineering,2014,33(08):1589-1596.[郭建春,尹建,赵志红.裂缝干扰下页岩储层压裂形成复杂裂缝可行性[J].岩石力学与工程学报,2014,33(08):1589-1596.]
[9]Yew C,Mear M,Chang C,et al.On Perforating and Fracturing of Deviated Cased Wellbores[C].SPE Annual Technical Conference and Exhibition,3-6 October,Houston,Texas,USA.SPE26514.1993.
[10]Olson J E.Fracture Mechanics Analysis of Joints and Veins[D].California:Stanford University,1991.
[11]Olson J E.Multi-fracture propagation modeling:Applications to hydraulic fracturing in shales and tight gas sands[C]//American Rock Mechanics Association.The 42nd US Rock Mechanics Symposium (USRMS) and 2nd US-Canada Rock Mechanics Symposium.USA:American Rock Mechanics Association,2008.
[12]Germanovich L N,Astakhov D K.Fracture closure in extension and mechanical interaction of parallel joints[J].Journal of Geophysical Research-Solid Earth,2004,109(B2):105-122.
[13]Li Lianchong,Tang Chun’an,Yang Tianhong,et al.Application of FSD coupling model to the test of multiple hydraulic fracturing[J].Chinese Journal of Rock Mechanics and Engineering,2004,23(19):3240-3244.[李连崇,唐春安,杨天鸿,等.FSD耦合模型在多孔水压致裂试验中的应用[J].岩石力学与工程学报,2004,23(19):3240-3244.]
[14]Li Lianchong,Yang Tianhong,Tang Chun’an,et al.Coupling analysis on hydraulic fracturing process of rock[J].Chinese Journal of Rock Mechanics and Engineering,2003,22(7):1060-1066.[李连崇,杨天鸿,唐春安,等.岩石水压致裂过程的耦合分析[J].岩石力学与工程学报,2003,22(7):1060-1066.]
[15]Yang Jiaosheng,Wang Yibing,Li Anqi,et al.Experimental study on propagation mechanism of complex hydraulic fracture in coal-bed[J].Journal of China Coal Society,2012,37(1):73-77.[杨焦生,王一兵,李安启,等.煤岩水力裂缝扩展规律试验研究[J].煤炭学报,2012,37(1):73-77.]
[16]Beugelsdijk L,De Pater C,Sato K,et al.Experimental Hydraulic Fracture Propagation in A Multi-Fractured Medium[C].SPE Asia Pacific Conference on Integrated Modelling for Asset Management,25-26 April,Yokohama,Japan.SPE59419.2000.
[17]Wu Qi,Xu Yun,Wang Xiaoquan,et al.Volume fracturing technology of unconventional reservoirs:Connotation,optimization design and implementation[J].Petroleum Exploration and Development,2012,39(3):352-358.[吴奇,胥云,王晓泉,等.非常规油气藏体积改造技术——内涵、优化设计与实现[J].石油勘探与开发,2012,39(3):352-358.]
[18]Warpinski N,Teufel L.Influence of geologic discontinuities on hydraulic fracture propagation (includes associated papers 17011 and 17074)[J].Journal of Petroleum Technology,1987,39(2):209-220.
[19]Ren Lan,Tao Yongfu,Zhao Jinzhou,et al.Simultaneous hydraulic fracturing field tests in ultra-low permeability sandstone reservoirs of Changqing Oilfield[J].Chinese Journal of Rock Mechanics and Engineering,2015,34(2):330-339.[任岚,陶永富,赵金洲,等.超低渗透砂岩储层同步压裂先导性矿场试验[J].岩石力学与工程学报,2015,34(2):330-339.]
[20]Fisher M,Heinze J,Harris C,et al.Optimizing horizontal completions in the Barnett shale with microseismic fracture mapping[J].Journal of Petroleum Technology,2005,57(3):41-42.
[21]Kresse O,Weng X,Gu H,et al.Numerical modeling of hydraulic fractures interaction in complex naturally fractured formations[J].Rock Mechanics and Rock Engineering,2013,46(3):555-568.
[22]Pan Linhua,Zhang Shicheng,Cheng Lijun,et al.A numerical simulation of the inter-cluster interference in multi-cluster staged fracking for horizontal wells[J].Natural Gas Industry,2014,34(1):74-79.[潘林华,张士诚,程礼军,等.水平井“多段分簇”压裂簇间干扰的数值模拟[J].天然气工业,2014,34(1):74-79.]
[23]Hou Mingxun,Wang Dexin,Wang Shuilin,et al.Study on Interwell communication by concurrent hydrofracturing[J].Rock and Soil Mechanics,2003,24(4):561-564.[侯明勋,王德新,王水林,等.同时压裂条件下实现井间连通方法探讨[J].岩土力学,2003,24(4):561-564.]
[24]Na Zhiqiang.Study on the Fracture Initiation and Propagation Model for Horizontal Well Fracturin[D].Qingdao:China University of Petroleum,2009.[那志强.水平井压裂起裂机理及裂缝延伸模型研究[D].青岛:中国石油大学,2009.]
[25]Weng Dingwei,Lei Qun,Xu Yun,et al.Network fracturing techniques and its application in the field[J].Acta Petrolei Sinica,2011,32(2):280-284.[翁定为,雷群,胥云,等.缝网压裂技术及其现场应用[J].石油学报,2011,32(2):280-284.]
[26]Wu R,Kresse O,Weng X,et al.Modeling of interaction of hydraulic fractures in complex fracture networks[C].SPE Hydraulic Fracturing Technology Conference,6-8 February,Woodlands,Texas,USA.SPE152052,2012.
[27]Bryant E C,Hwang J,Sharma M M.Arbitrary fracture propagation in heterogeneous poroelastic formations using a finite volume-based cohesive zone model[C].SPE Hydraulic Fracturing Technology Conference,3-5 February,Woodlands,Texas,USA.SPE173374.2015.
[28]Nagel N B,Sanchez-Nagel M.Stress Shadowing and Microseismic Events:A Numerical Evaluation[C].SPE Annual Technical Conference and Exhibition,30 October-2 November,Denver,Colorado,USA.SPE147363.2011.
[29]Daniels J,Waters G,LeCalvez J,et al.Contacting More of the Barnett Shale Through an Integration of Real-Time Microseismic Monitoring,Petrophysics and Hydraulic Fracture Design[C].SPE Annual Technical Conference and Exhibition,12-14 October,Anaheim,California,USA.SPE110562.2007.
[1] 位云生, 贾爱林, 郭智, 孟德伟, 王国亭. 致密砂岩气藏多段压裂水平井优化部署[J]. 天然气地球科学, 2019, 30(6): 919-924.
[2] 崔春兰, 董振国, 吴德山. 湖南保靖区块龙马溪组岩石力学特征及可压性评价[J]. 天然气地球科学, 2019, 30(5): 626-634.
[3] 罗红文, 李海涛, 刘会斌, 孙涛, 卢宇, 李颖. 低渗气藏两相渗流压裂水平井温度剖面预测[J]. 天然气地球科学, 2019, 30(3): 389-399.
[4] 谢维扬, 刘旭宁, 吴建发, , 张鉴, 吴天鹏, 陈满. 页岩气水平井组产量递减特征及动态监测[J]. 天然气地球科学, 2019, 30(2): 257-265.
[5] 姜瑞忠, 原建伟, 崔永正, 张伟, 张福蕾, 张海涛, 毛埝宇. 基于TPHM的页岩气藏多级压裂水平井产能分析[J]. 天然气地球科学, 2019, 30(1): 95-101.
[6] 黄雨,李晓平,谭晓华. 三重介质复合气藏水平井不稳定产量递减动态分析[J]. 天然气地球科学, 2018, 29(8): 1190-1197.
[7] 曾凡辉, 王小魏, 郭建春, 郑继刚, 李亚州, 向建华. 基于连续拟稳定法的页岩气体积压裂水平井产量计算[J]. 天然气地球科学, 2018, 29(7): 1051-1059.
[8] 吕志凯, 贾爱林, 唐海发, 刘群明, 王泽龙. 大型致密砂岩气藏水平井产能评价与新认识[J]. 天然气地球科学, 2018, 29(6): 873-879.
[9] 翁定为,付海峰,包力庆,胥云, 梁天成,张金. 水平井平面射孔实验研究[J]. 天然气地球科学, 2018, 29(4): 572-578.
[10] 卢文涛,李继庆,郑爱维,梁榜,张谦,杨文新. 涪陵页岩气田定产生产分段压裂水平井井底流压预测方法[J]. 天然气地球科学, 2018, 29(3): 437-442.
[11] 巫修平,张群. 碎软低渗煤层顶板水平井分段压裂裂缝扩展规律及控制机制[J]. 天然气地球科学, 2018, 29(2): 268-276.
[12] 梁榜,李继庆,郑爱维,卢文涛,张谦. 涪陵页岩气田水平井开发效果评价[J]. 天然气地球科学, 2018, 29(2): 289-295.
[13] 王琰琛, 陈军, 邓亚, 肖聪. 页岩气藏体积压裂水平井渗流模型[J]. 天然气地球科学, 2018, 29(12): 1795-1802.
[14] 康毅力,白佳佳,游利军. 有机质含量对页岩声波传播特性的影响[J]. 天然气地球科学, 2017, 28(9): 1341-1349.
[15] 王业众,段国彬,桑宇,彭华,张林,周长林,余良志,陈伟华. 衬管完井水平井新型布酸技术研究与应用——以安岳气田磨溪构造龙王庙组气藏为例[J]. 天然气地球科学, 2017, 28(8): 1264-1268.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 朱俊章;施和生;舒誉;杜家元;罗俊莲;. 珠江口盆地珠-坳陷典型烃源岩热压模拟实验――生排烃模式及TOC恢复系数探讨[J]. 天然气地球科学, 2006, 17(4): 573 -578 .
[2] 傅雪海;秦勇;杨永国;彭金宁;韩训晓;. 甲烷在煤层水中溶解度的实验研究[J]. 天然气地球科学, 2004, 15(4): 345 -348 .
[3] . 缘何说21世纪是天然气时代[J]. 天然气地球科学, 2000, 11(2): 24 .
[4] 孙斌;赵庆波;李五忠;. 中国煤层气资源及勘探策略[J]. 天然气地球科学, 1998, 9(6): 1 -10 .
[5] 徐永昌;刘文汇;沈平;陶明信;郑建京;. 天然气地球化学的重要分支――稀有气体地球化学[J]. 天然气地球科学, 2003, 14(3): 157 -166 .
[6] 李军;李凤霞;周立英;朱银霞;赵景茂;. 板桥凹陷带油环凝析气藏类型和成藏条件分析[J]. 天然气地球科学, 2003, 14(4): 271 -274 .
[7] 陈启林;杨占龙;关银录;卫平生;. 银根-额济纳裂谷盆地群凹陷结构样式及对成藏的控制[J]. 天然气地球科学, 2005, 16(5): 559 -563 .
[8] 余元洲;马小明;赵腊腊;杨丽蓉;闫宝东. 千米桥潜山老井潜力分析[J]. 天然气地球科学, 2008, 19(05): 690 -694 .
[9] 付小东 秦建中 腾格尔 王小芳. 固体沥青——反演油气成藏及改造过程的重要标志[J]. 天然气地球科学, 2009, 20(2): 167 -173 .
[10] 林潼, 焦贵浩, 孙平, 王东良, 梁浩, 王志勇. 三塘湖盆地石炭系火山岩储层特征及其影响因素分析[J]. 天然气地球科学, 2009, 20(4): 513 -517 .