天然气地球科学

• 非常规天然气 • 上一篇    

四川盆地龙马溪组页岩的CH4和CO2气体高压吸附特征及控制因素

朱阳升1,2,宋学行1,郭印同3,徐峰3,孙楠楠1,魏伟1,4   

  1. 1.中国科学院上海高等研究院,中国科学院低碳转化科学与工程重点实验室,上海 201203;
    2.上海大学环境与化学工程学院,上海 200444;
    3.中国科学院武汉岩土力学研究所岩土力学与工程国家重点实验室,湖北 武汉 430071;
    4.上海科技大学物质科学与技术学院,上海 201210
  • 收稿日期:2016-01-20 修回日期:2016-03-01 出版日期:2016-10-10 发布日期:2016-10-10
  • 通讯作者: 魏伟(1971-),男,山东临沂人,研究员,博士生导师,主要从事C1化学与工程、二氧化碳捕获、利用和封存等研究. E-mail:weiwei@sari.ac.cn.
  • 作者简介:朱阳升(1989-),男,安徽枞阳人,硕士研究生,主要从事页岩超临界二氧化碳压裂与储层吸附研究. E-mail:zhuys@sari.ac.cn.
  • 基金资助:
    中国科学院战略性先导科技专项(B类)_页岩储层无水压裂关键技术研究(编号:XDB10040200)资助.

High-pressure adsorption characteristics and controlling factors of CH4 and CO2 on shales from Longmaxi Formation,Chongqing,Sichuan Basin

Zhu Yang-sheng1,2,Song Xue-hang1,Guo Yin-tong3,Xu Feng3,Sun Nan-nan1,Wei Wei1,4   

  1. 1.CAS Key Laboratory of Low-Carbon Conversion Science and Engineering,Shanghai Advanced Research Institute,
    Chinese Academy of Sciences,Shanghai 201203,China;
    2.School of Environment and Chemical Engineering,Shanghai University,Shanghai 200444,China;
    3.State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences,Wuhan 430071,China;
    4.School of Physical Science and Technology,Shanghai Tech University,Shanghai 201210,China
  • Received:2016-01-20 Revised:2016-03-01 Online:2016-10-10 Published:2016-10-10

摘要: 通过对四川盆地重庆地区下志留统龙马溪组的钻井岩心和野外露头等进行分析,利用高压吸附仪分析了页岩中CH4、CO2气体的吸附性能,并采用N2吸附法、CO2吸附法、场发射扫描电子显微镜(FE_SEM)和X-射线衍射(XRD)等技术,从孔隙结构、有机碳含量、矿物成分、温度和单位压力变化等方面探讨页岩吸附能力的影响关系。研究表明,龙马溪组页岩CH4、CO2吸附曲线具有Ⅰ型等温线特征,用Langmuir模型回归等温线能较好地拟合实验数据;页岩的总孔体积、比表面积与饱和吸附量体现良好的线性相关关系,且正相关;页岩有机质和矿物成分通过控制着微米_纳米级孔隙的相对丰度影响着气体的吸附和储存,微孔、中孔孔体积及孔隙度均随总有机碳含量(TOC)值增加而增大;TOC值越大,页岩的饱和吸附量就越大,二者具有良好的正相关性;吸附气量与黏土矿物含量呈正线性相关,与脆性矿物含量呈现相反的变化规律。温度升高会加快气体解吸速度,降低吸附量;此外,页岩对CO2吸附能力高于CH4。

关键词: 页岩, 孔隙结构, CO2吸附, CH4吸附, 吸附特征, 控制因素

Abstract: Adsorption isotherms for CH4 and CO2 under different temperatures were measured by high pressure adsorption analyzer on the Longmaxi Formation shale samples collected from Chongqing region in Sichuan Basin.Meanwhile,various characterization methods such as gas adsorption (N2,CO2) analysis,field emission scanning electron microscope (FE-SEM) and X-ray diffraction (XRD) were used to analyze the influence of porous structure,TOC,mineral composition,temperature and unit change in pressure on the absorption behavior.Type I isotherms were obtained for the adsorption of both CO2 and CH4 on the sample,and the experimental data can be fitted very well by the Langmuir model.The pore volumes and BET specific surface areas are positively related to the saturated adsorption capacity.TOC and clay mineral composition affect the gas adsorption through controlling of the porous structure (micron and nanometer scale).Micropore and mesopore were mostly originated from the organic matter and increased with the increase of TOC.The higher the TOC value and the clay mineral contents,the greater the adsorption capacity,while brittle minerals had a negative effect on adsorption capacity.Furthermore,CO2 and CH4 adsorption capacity decrease with temperature rising on account of gas desorption rate increasing.In addition,the sorption capacity of CO2 is always higher than CH4.

Key words: Shale, Pore structure, CO2 sorption, CH4 sorption, Sorption properties, Controlling factor

中图分类号: 

  • TE122.2

[1]Curtis J B.Fractured shale-gas systems[J].AAPG Bulletin,2002,[JP]86(11):1921-1938.
[2]Ross D J K,Bustin R M.Shale gas potential of the Lower Jurassic Gordondale member,northeastern British Columbia,Canada[J].Bulletin of Canadian Petroleum Geology,2007,55(1):51-75.[JP]
[3]Chalmers G R L,Bustin R M.Lower Cretaceous gas shales in northeastern British Columbia,Part Ⅱ:Evaluation of regional potential gas resources[J].Bulletin of Canadian Petroleum Geology,2008,56(1):22-61.
[4]Jarvie D M,Hill R J,Ruble T E,et al.Unconventional shale-gas systems:The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J].AAPG Bulletin,2007,91(4):475-499.
[5]Sun Baojiang,Zhang Yanlong,Du Qingjie,et al.Property evaluation of CO2 adsorption and desorption on shale[J].Journal of China University of Petroleum,2013,37(5):95-99.[孙宝江,张彦龙,杜庆杰,等.CO2在页岩中的吸附解吸性能评价[J].中国石油大学学报:自然科学版,2013,37(5):95-99.]
[6]Wang Haizhu,Shen Zhonghou,Li Gensheng.Feasibility analysis on shale gas exploitation with supercritical CO2[J].Petroleum Drilling Techniques,2011,39(3):30-35.[王海柱,沈忠厚,李根生.超临界CO2开发页岩气技术[J].石油钻探技术,2011,39(3):30-35.]
[7]Liu F Y,Ellett K,Xiao Y T,et al.Assessing the feasibility of CO2 storage in the new albany shale (devonian-mississippian) with potential enhanced gas recovery using reservoir simulation[J].International Journal of Greenhouse Gas Control,2013,17:111-126.
[8]Gasparik M,Bertier P,Gensterblum Y,et al.Geological controls on the methane storage capacity in organic-rich shales[J].International Journal of Coal Geology,2014,123(2):34-51.
[9]Gasparik M,Ghanizadeh A,Bertier P,et al.High-pressure methane sorption isotherms of black shales from the Netherlands[J].Energy & Fuels,2012,26(8):4995-5004.
[10]Chalmers G R L,Bustin R M.The organic matter distribution and methane capacity of the lower Cretaceous strata of northeastern British Columbia,Canada[J].International Journal of Coal Geology,2007,70(1-3):223-239.
[11]Hou Yuguang,He Sheng,Yi Jizheng,et al.Effect of pore structure on methane sorption capacity of shales[J].Petroleum Exploration & Development,2014,41(2):248-256.[侯宇光,何生,易积正,等.页岩孔隙结构对甲烷吸附能力的影响[J].石油勘探与开发,2014,41(2):248-256.]
[12]Rexer T F T,Benham M J,Aplin A C,et al.Methane adsorption on shale under simulated geological temperature and pressure conditions[J].Energy & Fuels,2013,27(6):3099-3109.
[13]Li T,Wu C.Research on the abnormal isothermal adsorption of shale[J].Energy & Fuels,2015,29(2):634-640.[JP]
[14]Lu X C,Li F C,Watson A T.Adsorption measurements in devonian shales[J].Fuel,1995,74(4):599-603.
[15]Schettler P D,Parmely C R.The measurement of gas desorption isotherms for Devonian shale[J].GRI Devonian Gas Shale Technology Review,1990,7(1):4-9.
[16]Cheng A L,Huang W L.Selective adsorption of hydrocarbon gases on clays and organic matter[J].Organic Geochemistry,2004,35(4):413-423.
[17]Weniger P,Kalkreuth W,Busch A,et al.High-pressure methane and carbon dioxide sorption on coal and shale samples from the Parana Basin,Brazil[J].International Journal of Coal Geology,2010,84(3/4):190-205.
[18]Ambrose W A,Lakshminarasimhan S,Holtz M H,et al.Geologic factors controlling CO2 storage capacity and permanence:case studies based on experience with heterogeneity in oil and gas reservoirs applied to CO2 storage[J].Environmental Geology,2008,54(8):1619-1633.
[19]Elliot T R,Celia M A.Potential restrictions for CO2 sequestration sites due to shale and tight gas production[J].Environmental Science & Technology,2012,46(7):4223-4227.
[20]Kang S M,Fathi E,Ambrose R J,et al.Carbon dioxide storage capacity of organic-rich shales[J].SPE Journal,2011,16(4):842-855.
[21]Godec M,Koperna G,Petrusak R,et al.Potential for enhanced gas recovery and CO2 storage in the marcellus shale in the eastern united states[J].International Journal of Coal Geology,2013,118(10):95-104.
[22]Wang Yuman,Dong Dazhong,Li Jianzhong,et al.Reservoir characteristics of shale gas in Longmaxi Formation of the Lower Silurian,southern Sichuan[J].Acta Petrolei Sinica,2012,33(4):551-561.[王玉满,董大忠,李建忠,等.川南下志留统龙马溪组页岩气储层特征[J].石油学报,2012,33(4):551-561.]
[23]Hutson N D,Yang R T.Theoretical basis for the Dubinin-Radushkevitch (D-R) adsorption isotherm equation[J].Adsorption-Journal of the International Adsorption Society,1997,3(3):189-195.
[24]Yang Yiting,Tang Xuan,Wang Chengyu,et al.Distribution characteristics of shale in Chongqing and prospect of shale gas[J].Journal of Chongqing University of Technology:Natural Science,2010,12(1):4-6.[杨镱婷,唐玄,王成玉,等.重庆地区页岩分布特点及页岩气前景[J].重庆科技学院学报:自然科学版,2010,12(1):4-6.]
[25]Hu Run,Chen Yicai,Zheng Haiqiao,et al.Geochemical characteristics of shale and shale gas potential analysis in the Longmaxi Formation,Fuling area,Chongqing[J].Petroleum Geology and Engineering,2015,29(5):33-37.[胡润,陈义才,郑海桥,等.涪陵_重庆地区龙马溪组页岩地球化学特征及页岩气资源潜力评价[J].石油地质与工程,2015,29(5):33-37.]
[26]Han Xiangxin,Jiang Xiumin,Wang Dezhong,et al.Effect of combustion process on pore structure of oil shale ash[J].Journal of Chemical Industry and Engineering (China),2007,58(5):1296-1300.[韩向新,姜秀民,王德忠,等.燃烧过程对页岩灰孔隙结构的影响[J].化工学报,2007,58(5):1296-1300.]
[27]Chen Shangbin,Zhu Yanming,Wang Hongyan,et al.Structure characteristics and accumulation significance of nanopores in Longmaxi shale gas reservoir in the southern Sichuan Basin[J].Journal of China Coal Society,2012,37(3):438-444.[陈尚斌,朱炎铭,王红岩,等.川南龙马溪组页岩气储层纳米孔隙结构特征及其成藏意义[J].煤炭学报,2012,37(3):438-444.][JP]
[28]Yang Feng,Ning Zhengfu,Hu Changpeng,et al.Characterization of microscopic pore structures in shale reservoirs[J].Acta Petrolei Sinica,2013,34(2):301-311.[杨峰,宁正福,胡昌蓬,等.页岩储层微观孔隙结构特征[J].石油学报,2013,34(2):301-311.]
[29]Yang Wei,Chen Guojun,Lv Chengfu,et al.Micropore characteristics of the organic-rich shale in the 7th member of the Yanchang Formation in the southeast of Ordos Basin[J].Natural Gas Geoscience,2015,26(3):418-426.[杨巍,陈国俊,吕成福,等.鄂尔多斯盆地东南部延长组长7段富有机质页岩孔隙特征[J].天然气地球科学,2015,26(3):418-426.]
[30]Wu Yue,Fan Tailiang,Jiang Shu,et al.Characterizing Techniques and classification methods for microscope pore system in marine shale reservoir[J].Geological Science & Technology Information,2014(4):91-97.[伍岳,樊太亮,蒋恕,等.海相页岩储层微观孔隙体系表征技术及分类方案[J].地质科技情报,2014(4):91-97.]
[31]Sondergeld C H,Ambrose R J,Rai C S,et al.Micro-structural studies of gas shales[J].SPE Unconventional Gas Conference.2010.
[32]Chalmers G R,Bustin R M,Power I M.Characterization of gas shale pore systems by porosimetry,pycnometry,surface area,and field emission scanning electron microscopy/transmission electron microscopy image analyses:Examples from the Barnett,Woodford,Haynesville,Marcellus,and Doig units[J].AAPG Bulletin,2012,96(6):1099-1119.
[33]Jiao Shujing,Han Hui,Weng Qingping,et al.Scanning electron microscope analysis of porosity in shale[J].Journal of Chinese Electron Microscopy Society,2012,31(5):432-436.[焦淑静,韩辉,翁庆萍,等.页岩孔隙结构扫描电镜分析方法研究[J].电子显微学报,2012,31(5):432-436.]
[34]Yuan Ye,Zhao Jingzhou,Er Chuang,et al.Research of shale pore types and characteristics of the Mesozoic and Upper Paleozoic,Ordos Basin[J].Journal of Xi'an Shiyou University :Natural Science,2014,29(2):14-19.[袁野,赵靖舟,耳闯,等.鄂尔多斯盆地中生界及上古生界页岩孔隙类型及特征研究[J].西安石油大学学报:自然科学版,2014,29(2):14-19.]
[35]Liu F,Ellett K,Xiao Y,et al.Assessing the feasibility of CO2 storage in the New Albany Shale (Devonian-Mississippian) with potential enhanced gas recovery using reservoir simulation[J].International Journal of Greenhouse Gas Control,2013,17(17):111-126.
[36]Langmuir I.The Adsorption of Gases on Plane Surfaces of Glass,Mica and Platinum[J].Journal of the American Chemical Society,1918,40(9):1361-1403.
[37]Ross D J K,Bustin R M.Impact of mass balance calculations on adsorption capacities in microporous shale gas reservoirs[J].Fuel,2007,86(17/18):2696-2706.
[38]Zhao Jin,Zhang Suian,Cao Lihu.Comparison of experimental adsorption between shale gas and coalbed gas[J].Natural Gas Geoscience,2013,24(1):176-181.[赵金,张遂安,曹立虎.页岩气与煤层气吸附特征对比实验研究[J].天然气地球科学,2013,24(1):176-181.]
[39]Bi He,Jiang Zhenxue,Li Peng,et al.Adsorption characteristic and influence factors of Longmaxi shale in southeastern Chongqing[J].Natural Gas Geoscience,2014,25(2):302-310.[毕赫,姜振学,李鹏,等.渝东南地区龙马溪组页岩吸附特征及其影响因素[J].天然气地球科学,2014,25(2):302-310.]
[40][KG*6/7]Guo Shaobing.Experimental study on isothermal adsorption of methane gas on three shale samples from Upper Paleozoic strata of the Ordos Basin[J].Journal of Petroleum Science and Engineering,2013,110(5):132-138.
[41]Loucks R G,Ruppel S C.Mississippian Barnett Shale:Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin,Texas[J].AAPG Bulletin,2007,91(4):579-601.
[42]Lu X,Li F,Watson A T.Adsorption Studies of Natural Gas Storage in Devonian Shales[J].SPE Formation Evaluation,1995,10(2):109-113.
[43]Nuttal B C,Eble C,Bustin R M,et al.Analysis of Devonian black shales in kentucky for potential carbon dioxide sequestration and enhanced natural gas production[J].
Greenhous Gas Control Technologies,2005,2:2225-2228.

[1] 王科, 李海涛, 李留杰, 张庆, 补成中, 王志强. 3种常用页岩气井经验递减方法——以四川盆地威远区块为例[J]. 天然气地球科学, 2019, 30(7): 946-954.
[2] 张晗. 四川盆地龙马溪组页岩储层缝网导流能力优化[J]. 天然气地球科学, 2019, 30(7): 955-962.
[3] 杨振恒, 韩志艳, 腾格尔, 熊亮, 申宝剑, 张庆珍, 史洪亮, 魏力民, 李艳芳, . 四川盆地南部五峰组—龙马溪组页岩地质甜点层特征——以威远—荣昌区块为例[J]. 天然气地球科学, 2019, 30(7): 1037-1044.
[4] 苟启洋, 徐尚, 郝芳, 舒志国, 杨峰, 陆扬博, 张爱华, 王雨轩, 程璇, 青加伟, 高梦天. 基于灰色关联的页岩储层含气性综合评价因子及应用——以四川盆地焦石坝区块为例[J]. 天然气地球科学, 2019, 30(7): 1045-1052.
[5] 杨娟, 王作栋, 薄海波, 张婷, 吉生军, 王静莹. 下马岭组油页岩热模拟实验抽提物中三芴系列化合物演化特征[J]. 天然气地球科学, 2019, 30(7): 1063-1071.
[6] 郭芪恒, 金振奎, 耿一凯, 赵建华, 常睿, 崔学敏, 王金艺. 四川盆地龙马溪组页岩中碳酸盐矿物特征及对储集性能的影响[J]. 天然气地球科学, 2019, 30(5): 616-625.
[7] 崔春兰, 董振国, 吴德山. 湖南保靖区块龙马溪组岩石力学特征及可压性评价[J]. 天然气地球科学, 2019, 30(5): 626-634.
[8] 王秀平, 牟传龙, 肖朝晖 , 郑斌嵩 , 陈尧 , 王启宇. 鄂西南地区五峰组—龙马溪组连续沉积特征[J]. 天然气地球科学, 2019, 30(5): 635-651.
[9] 谢卫东, 王猛, 代旭光, 王彦迪. 山西河东煤田中—南部煤系页岩气储层微观特征[J]. 天然气地球科学, 2019, 30(4): 512-525.
[10] 黄小青, 王建君, 杜悦, 李林, 张卓. 昭通国家级页岩气示范区YS108区块小井距错层开发模式探讨[J]. 天然气地球科学, 2019, 30(4): 557-565.
[11] 何龙, 王云鹏, 陈多福, 王钦贤, 王成. 重庆南川地区五峰组—龙马溪组黑色页岩沉积环境与有机质富集关系[J]. 天然气地球科学, 2019, 30(2): 203-218.
[12] 曾凡辉, 彭凡, 郭建春, 钟华, 向建华. 考虑页岩缝宽动态变化的微裂缝气体质量传输模型[J]. 天然气地球科学, 2019, 30(2): 237-246.
[13] 张磊, 徐兵祥, 辛翠平, 乔向阳, 穆景福, 许阳, 韩长春. 考虑主裂缝的页岩气产能预测模型[J]. 天然气地球科学, 2019, 30(2): 247-256.
[14] 谢维扬, 刘旭宁, 吴建发, , 张鉴, 吴天鹏, 陈满. 页岩气水平井组产量递减特征及动态监测[J]. 天然气地球科学, 2019, 30(2): 257-265.
[15] 孙兵华, 张廷山, . 鄂尔多斯盆地张家湾地区长7页岩油气储集特征及其影响因素[J]. 天然气地球科学, 2019, 30(2): 274-284.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 付广;王剑秦. 地壳抬升对油气藏保存条件的影响[J]. 天然气地球科学, 2000, 11(2): 18 -23 .
[2] 周兴熙;. 库车油气系统油气藏相态分布及其控制因素[J]. 天然气地球科学, 2004, 15(3): 205 -213 .
[3] 刘春慧;金振奎;朱桂芳;王庆东;张建良. . 准噶尔盆地东部吉木萨尔凹陷二叠系梧桐沟组储层物性特征及控制因素[J]. 天然气地球科学, 2007, 18(3): 375 -379 .
[4] 张顺存,;王凌;石新璞;方琳浩,;董文举,;孔玉华 . 准噶尔盆地腹部陆西地区石炭系火山岩储层的物性特征及其与电性的关系[J]. 天然气地球科学, 2008, 19(2): 198 -203 .
[5] 李士祥;胡明毅;李霞;. 榆林气田山西组2段砂岩成岩作用及孔隙演化[J]. 天然气地球科学, 2005, 16(2): 200 -205 .
[6] 张朝;张廷山;魏祥峰;戴传瑞;王秀林 . 也门X区块下白垩统沉积相分析[J]. 天然气地球科学, 2008, 19(06): 835 -839 .
[7] 陈凤喜 王勇 张吉 杨勇. 鄂尔多斯盆地苏里格气田盒8气藏开发有利区块优选研究[J]. 天然气地球科学, 2009, 20(1): 94 -99 .
[8] 白斌, 邹才能, 朱如凯, 翟文亮, 刘柳红, 戴朝成, 张健, 杜红权, 毛治国. 利用露头、自然伽玛、岩石地球化学和测井地震一体化综合厘定层序界面——以四川盆地上三叠统须家河组为例[J]. 天然气地球科学, 2010, 21(1): 78 -86 .
[9] 张雷, 刘招君, 杜江峰, 杨婷, 侯伟. 沾河断陷下白垩统淘淇河组层序地层格架及有利生储盖组合[J]. 天然气地球科学, 2010, 21(1): 100 -106 .
[10] 赵阳, 刘震. 中国东部陆相断陷盆地圈闭勘探特点分析[J]. 天然气地球科学, 2010, 21(2): 276 -280 .