天然气地球科学

• 天然气开发 • 上一篇    下一篇

基于结构弱面及缝间干扰的页岩缝网压裂技术

尚校森1,2,丁云宏2,杨立峰2,卢拥军2,鄢雪梅2,王永辉2   

  1. 1.中国石油大学(华东),山东 青岛 266580;
    2.中国石油勘探开发研究院廊坊分院,河北 廊坊 065007
  • 收稿日期:2015-09-05 修回日期:2015-11-01 出版日期:2016-10-10 发布日期:2016-10-10
  • 作者简介:尚校森(1988-),女,安徽砀山人,博士研究生,主要从事油气藏增产改造技术研究. E-mail:shangxs2013@163.com.
  • 基金资助:
    国家重点基础研究发展计划 “页岩气储层压裂改造机理研究”(编号:2013CB228004)资助.

Network fracturing technique in shale reservoirs based on weak discontinuity and fracture interaction

Shang Xiao-sen1,2,Ding Yun-hong2,Yang Li-feng2,Lu Yong-jun2,Yan Xue-mei2,Wang Yong-hui2   

  1. 1.China University of Petroleum(East China),Qingdao 266580,China;
    2.Langfang Branch of Research Institute of Petroleum Exploration & Development,PetroChina,Langfang 065007,China
  • Received:2015-09-05 Revised:2015-11-01 Online:2016-10-10 Published:2016-10-10

摘要: 为明确页岩储层中层理、天然裂缝等结构弱面和缝间干扰对缝网压裂效果的影响机制,根据全三维物模实验所观察到的裂缝扩展现象,理论分析了结构弱面控制下和缝间干扰影响下复杂裂缝的形成机制,并结合数模研究对现场有助于形成复杂裂缝的多种施工工艺和方法进行了探讨。最终得出:结构弱面可使与之相遇的水力裂缝停止、转向或产生新缝,结构弱面发生剪切错动或张开后均可成为页岩气流动通道;此外,缝间干扰会影响后续裂缝的几何形态,从而改变其与结构弱面的逼近角;2级主裂缝间可以产生分支缝,有利于增加裂缝复杂度,适当降低裂缝间距可在一定程度上增强缝间干扰。目前已进行矿场试验的大排量低黏压裂液、暂堵转向、平台“拉链式”压裂等措施取得了较好的监测结果,作业方式的改进和不同压裂技术的综合应用也是增加裂缝复杂度的有效途径。

关键词: 页岩储层, 结构弱面, 缝间干扰, 复杂缝网, 水力压裂

Abstract: Network fracturing technique is important for the development of shale gas.To investigate the influence of weak discontinuities and fracture interaction on network fracturing result,the formation of complex fractures under weak plan and fracture interaction was analyzed theoretically on the basis of full three-dimensional physical simulation experiments.With combination of numerical simulation,several methods contributing to complex fractures were discussed.The results show that the hydraulic fracture may stop extension,swerve or initiate new fracture when it intersects with the plan.The weak discontinuity can become effective channel for gas to flow after it was opened or was shear dislocated.The hydraulic fracture occurring afterwards was influenced by the fracture generating beforehand due to the fracture interaction and then its approaching angle with weak plan changed.Branch crack occurred between two principle fractures and that was helpful to the formation of complicated fracture network.Proper reduction of fracture interval is in favor of enhancing the interaction at some extent.Some methods that had been tested in the field have obtained satisfactory monitoring results.The change of fracturing process and the combination of different techniques can be effective ways to enhance the fractures complexity.

Key words: Shale reservoirs, Weak discontinuity, Fracture interaction, Complicated fracture network, Hydraulic fracturing

中图分类号: 

  • TE357

[1]King G E.Thirty Years of Gas Shale Fracturing:What Have We Learned[C].SPE Annual Technical Conference and Exhibition,Florence,Italy,19-22 September,2010.SPR 133456.
[2]Wu Qi,Xu Yun,Wang Xiaoquan,et al.Volume fracturing technology of unconventional reservoirs:Connotation,optimization de sign and implementation[J].Petroleum Exploration and Development,2012,39(3):352-358.[吴奇,胥云,王晓泉,等.非常规油气藏体积改造技术——内涵、优化设计与实现[J].石油勘探与开发,2012,39(3):352-358.]
[3]Casas L A,Miskimins J L,Black A D,et al.Laboratory Hydraulic Fracturing Test on a Rock with Artificial Discontinuities[C].SPE Annual Technical Conference and Exhibition,San Antonio,Texas,USA,24-27 September,2006.SPE 103617.
[4]Mayerhofer M J,Lolon E P,Youngblood J E,et al.Integration of Microseismic Fracture Mapping Results with Numerical Fracture Network Production Modeling in the Barnett Shale[C].SPE Annual Technical Conference and Exhibition,San Antonio,Texas,USA,24-27 September 2006.SPE 102103.
[5]Maxwell S C,Steinsberger N,Zinno R.Microseismic Imaging of Hydraulic Fracture Complexity in the Barnett Shale[C].SPE Annual Technical Conference and Exhibition,San Antonio,Texas,USA,29 September-2 October,2002.SPE 77440.
[6]Beugelsdijk L J L,de Pater C J,Sato K.ExperimentalHydraulic Fracture Propagation in Multi-fractured Medium[C].SPE Asia Pacific Conference on Integrated modelling for Asset Management,Yokohama,Japan,25-26 April,2000.SPE 59419.
[7]Warpinski N R,Lorenz J C,Branagan P T,et al.Examination of a cored hydraulic fracture in a deep gas well[J].SPE Production & Facilities,1993,8(3):150-158.
[8]Chen Mian,Zhou Jian,Jin Yan,et al.Experimental study on fracturing features in naturally fractured reservoir[J].Acta Petrolei Sinica,2008,29(3):431-434.[陈勉,周健,金衍,等.随机裂缝性储层压裂特征实验研究[J].石油学报,2008,29(3):431-434.]
[9]Zhao Haifeng,Chen Mian,Jin Yan,et al.Rock fracture kinetics of the fracture mesh system in shale gas reservoirs[J].Petroleum Exploration and Development,2012,39(4):465-469.[赵海峰,陈勉,金衍,等.页岩气藏网状裂缝系统的岩石断裂动力学[J].石油勘探与开发,2012,39(4):465-469.]
[10]Zhao Jinzhou,Yang Hai,Li Yongming,et al.Stability of the natural fracture when the hydraulic fracture is approaching[J].Natural Gas Geoscience,2014,25(3):402-408.[赵金洲,杨海,李勇明,等.水力裂缝逼近时天然裂缝稳定性分析[J].天然气地球科学,2014,25(3):402-408.]
[11]Roussel N P,Sbama M M.Role of stress reorientation in the success of refracture treatments in tight gas sands[J].SPE Production & Operations,2012,27(4):346-355.
[12]Guo Jianchun,Zhou Xinhao,Deng Yan.Distribution rules of earth stress during sipper fracturing of shale gas horizontal cluster wells[J].Natural Gas Industry,2015,35(7):44-48.[郭建春,周鑫浩,邓燕.页岩气水平井组拉链压裂过程中地应力的分布规律[J].天然气工业,2015,35(7):44-48.]
[13]Guo Jianchun,Yin Jian,Zhao Zhihong.Feasibility of formation of complex fractures under cracks interference in shale reservoir fracturing[J].Chinese Journal of Rock Mechanics and Engineering,2014,33(8):1589-1596.[郭建春,尹建,赵志红.裂缝干扰下页岩储层压裂形成复杂裂缝可行性[J].岩石力学与工程学报,2014,33(8):1589-1596.]
[14]Zhao Jinzhou,Chen Xiyu,Liu Changyu,et al.The analysis of crack interaction in multistage horizontal fracturing[J].Natural Gas Geoscience,2015,26(3):533-538.[赵金洲,陈曦宇,刘长宇,等.水平井分段多簇压裂缝间干扰影响分析[J].天然气地球科学,2015,26(3):533-538.]
[15]Zeng Shunpeng,Zhang Guoqiang,Han Jiaxin,et al.Model of mufti-fracture stress shadow effect and optimization design for staged fracturing of horizontal wells[J].Natural Gas Industry,2015,35(3):55-58.[曾顺鹏,张国强,韩家新,等.多裂缝应力阴影效应模型及水平井分段压裂优化设计[J].天然气工业,2015,35(3):55-58.]
[16]Guo T K,Zhang,S C,Qu Z Q,et al.Experimental study of hydraulic fracturing for shale by stimulated reservoir volume[J].Fuel,2014,128:373-380.
[17]Wang Jilin,Zhu Yanming,Gong Yunpeng,et al.Influential factors and forecast of microcrack development degree of Longmaxi Formation shales in Nanchuan region,Chongqing[J].Natural Gas Geoscience,2015,26(8):1579-1586.[汪吉林,朱炎铭,宫云鹏,等.重庆南川地区龙马溪组页岩微裂缝发育影响因素及程度预测[J].天然气地球科学,2015,26(8):1579-1586.
[18]Cheng Yuanfang,Xu Taishuang,Wu Bailie,et al.Experimental study on the hydraulic fractures’ morphology of coal bed[J].Natural Gas Geoscience,2013,24(1):134-137.[程远方,徐太双,吴百烈,等.煤岩水力压裂裂缝形态实验研究[J].天然气地球科学,2013,24(1):134-137.]
[19]Cheng Yuanfang,Chang Xin,Sun Yuanwei,et al.Research on fracture network propa-gation pattern of shale reservoir based on fracture mechanics[J].Natural Gas Geoscience,2014,25(4):603-611.[程远方,常鑫,孙元伟,等.基于断裂力学的页岩储层缝网延伸形态研究[J].天然气地球科学,2014,25(4):603-611.]
[20]Sneddon,I N.The distribution of stress in the neighbourhood of a crack in an elastic solid[J].Proceedings of the Royal Society of London,Series A,1946,187(1009):229-260.
[21]Guo J C,Zhao X,Zhu H Y,et al.Numerical simulation of interaction of hydraulic fracture and natural fracture based on the cohesive zone finite element method[J].Journal of Natural Gas Science and Engineering,2015,25:180-188.
[22]Robert A A.New Advances in Shale Reservoir Analysis Using Flowback Data[C].SPE Eastern Regional Meeting,Pittsburgh,Pennsylvania,USA,20-22 August 2013.SPE 165721.2013.[JP]
[23]Lv Haigang,Yu Ping,Xi Jianping,et al.Experimental investigation of water absorption and its significance on pore network connectivity in mudstone from Silurian Longmaxi Formation,Sichuan Basin[J].Natural Gas Geoscience,2015,26(8):1556-1562.[吕海刚,于萍,习建萍,等.四川盆地志留系龙马溪组泥页岩吸水模拟实验及对孔隙连通性的指示意义[J].天然气地球科学,2015,26(8):1556-1562.]
[24]Qian Bin,Zhang Juncheng,Zhu Juhui,et al.Application of zipper fracturing of horizontal cluster wells in the Changning shale gas pilot zone,Sichuan Basin[J].Natural Gas Industry,2015,35(1):81-84.[钱斌,张俊成,朱炬辉,等.四川盆地长宁地区页岩气水平井组“拉链式”压裂实践[J].天然气工业,2015,35(1):81-84.]

[1] 张晗. 四川盆地龙马溪组页岩储层缝网导流能力优化[J]. 天然气地球科学, 2019, 30(7): 955-962.
[2] 陈立超, 王生维, . 煤岩弹性力学性质与煤层破裂压力关系[J]. 天然气地球科学, 2019, 30(4): 503-511.
[3] 谢卫东, 王猛, 代旭光, 王彦迪. 山西河东煤田中—南部煤系页岩气储层微观特征[J]. 天然气地球科学, 2019, 30(4): 512-525.
[4] 曾凡辉, 唐波涛, 王涛, 郭建春, 肖勇军, 张守仁. 考虑渗滤效应的压裂裸眼井破裂压力预测模型[J]. 天然气地球科学, 2019, 30(4): 549-556.
[5] 徐加祥, 丁云宏, 杨立峰, 刘哲, 陈挺. 页岩气储层迂曲微裂缝二维重构及多点起裂分析[J]. 天然气地球科学, 2019, 30(2): 285-294.
[6] 徐加祥, 丁云宏, 杨立峰, 王臻, 刘哲, 高睿. 基于扩展有限元的水力压裂缝间干扰及裂缝形态分析[J]. 天然气地球科学, 2018, 29(9): 1356-1363.
[7] 汪道兵,葛洪魁,宇波,文东升,周珺,韩东旭,刘露. 页岩弹性模量非均质性对地应力及其损伤的影响[J]. 天然气地球科学, 2018, 29(5): 632-643.
[8] 刘忠宝,冯动军,高波,李洪文,聂海宽. 上扬子地区下寒武统高演化页岩微观孔隙特征[J]. 天然气地球科学, 2017, 28(7): 1096-1107.
[9] 王志荣,贺平,郭志伟,陈玲霞,徐培远. 水力压裂条件下“三软”煤层压裂渗透模型及应用[J]. 天然气地球科学, 2017, 28(3): 349-355.
[10] 黄金亮,董大忠,李建忠,胡俊文,王玉满. 陆相页岩储层孔隙分形特征——以四川盆地三叠系须家河组为例[J]. 天然气地球科学, 2016, 27(9): 1611-1618.
[11] 李新景,陈更生,陈志勇,王兰生,王玉满,董大忠,吕宗刚,吕维宁,王淑芳,黄金亮,张晨晨. 高过成熟页岩储层演化特征与成因[J]. 天然气地球科学, 2016, 27(3): 407-416.
[12] 陈志鹏,梁兴,张介辉,王高成,刘臣,李兆丰,邹辰. 昭通国家级示范区龙马溪组页岩气储层超压成因浅析[J]. 天然气地球科学, 2016, 27(3): 442-448.
[13] 管全中,董大忠,王淑芳,黄金亮,王玉满,张晨. 海相和陆相页岩储层微观结构差异性分析[J]. 天然气地球科学, 2016, 27(3): 524-531.
[14] 陈彬滔,潘树新,方乐华,张庆石,李成刚,梁苏娟. 松辽盆地齐家—古龙凹陷青山口组泥页岩层段储层特征[J]. 天然气地球科学, 2016, 27(2): 298-308.
[15] 付海峰, 刘云志, 梁天成, 翁定为, 卢拥军, 修乃岭. 四川省宜宾地区龙马溪组页岩水力裂缝形态实验研究[J]. 天然气地球科学, 2016, 27(12): 2231-2236.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 付广;王剑秦. 地壳抬升对油气藏保存条件的影响[J]. 天然气地球科学, 2000, 11(2): 18 -23 .
[2] 李桂菊, 庄新国. 多年冻土区沉积物中甲烷的生成[J]. 天然气地球科学, 2004, 15(5): 516 -518 .
[3] 周兴熙;. 库车油气系统油气藏相态分布及其控制因素[J]. 天然气地球科学, 2004, 15(3): 205 -213 .
[4] 黄安敏;裴建翔;陈志宏;李绪深;李林;. 油气储层预测技术在琼东南盆地BD13区的应用[J]. 天然气地球科学, 2006, 17(4): 518 -522 .
[5] 胡守志,付晓文,王廷栋,李延均 . 储层中的沥青沉淀带及其对油气勘探的意义[J]. 天然气地球科学, 2007, 18(1): 99 -103 .
[6] 张顺存,;王凌;石新璞;方琳浩,;董文举,;孔玉华 . 准噶尔盆地腹部陆西地区石炭系火山岩储层的物性特征及其与电性的关系[J]. 天然气地球科学, 2008, 19(2): 198 -203 .
[7] 刘文汇;黄第藩;熊传武;徐永昌;. 成烃理论的发展及国外未熟―低熟油气的分布与研究现状[J]. 天然气地球科学, 1999, 10(1-2): 1 -22 .
[8] 张朝;张廷山;魏祥峰;戴传瑞;王秀林 . 也门X区块下白垩统沉积相分析[J]. 天然气地球科学, 2008, 19(06): 835 -839 .
[9] 朱维耀;宋洪庆; 何东博;王明 ;贾爱林;胡永乐 . 含水低渗气藏低速非达西渗流数学模型及产能方程研究[J]. 天然气地球科学, 2008, 19(05): 685 -689 .
[10] 陈凤喜 王勇 张吉 杨勇. 鄂尔多斯盆地苏里格气田盒8气藏开发有利区块优选研究[J]. 天然气地球科学, 2009, 20(1): 94 -99 .