天然气地球科学

• 天然气地球化学 • 上一篇    下一篇

石英吸附甲烷的蒙特卡罗研究

熊健,刘向君,梁利喜   

  1. 西南石油大学油气藏地质及开发工程国家重点实验室,四川 成都 610500
  • 收稿日期:2015-10-15 修回日期:2016-04-17 出版日期:2016-08-10 发布日期:2016-08-10
  • 作者简介:熊健(1986-),男,湖北荆州人,讲师,博士,主要从事非常规页岩气吸附性能等研究. E-mail:361184163@qq.com.
  • 基金资助:
    国家自然科学基金联合基金重点项目(编号:U1262209);国家自然科学基金青年基金(编号:41602155)联合资助.

Adsorption of methane in quartz by Grand Canonical Monte Carlo simulation

Xiong Jian,Liu Xiang-jun,Liang Li-xi   

  1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Southwest Petroleum University,Chengdu 610500,China
  • Received:2015-10-15 Revised:2016-04-17 Online:2016-08-10 Published:2016-08-10

摘要: 利用巨正则蒙特卡罗模拟方法对甲烷在石英中吸附行为进行了研究,并讨论了不同孔径、不同温度、不同含水量和不同组成对甲烷在石英中吸附行为的影响。研究结果表明:甲烷超额吸附量随着压力的增大而先上升后下降,且随着孔径增大逐渐减小;甲烷与石英相互作用能随着压力增大或孔径减小而减小,说明甲烷在孔中吸附逐渐由能量较高的吸附位向能量较低的吸附位转移;随着温度升高,甲烷等量吸附热减小,甲烷在孔中吸附逐渐由能量较低的吸附位向能量较高的吸附位转移,造成甲烷在石英孔中吸附能力降低,导致甲烷吸附量减小;水分子在孔中以定向方式占据着石英孔壁面,且受到范德华力和静电能共同作用在孔中以堆积形式存在;随着含水量增加,甲烷分子在孔中吸附位并没有随着发生变化,即水分子只占据甲烷分子吸附空间,造成甲烷吸附量减小;气体与石英间相互作用能量大小顺序为氮气>甲烷>二氧化碳,则石英上吸附能力大小的顺序为二氧化碳>甲烷>氮气;多组分竞争吸附中,甲烷在气相中摩尔分数降低、甲烷分子吸附位变化以及甲烷吸附空间减小,综合作用导致了甲烷吸附量减小。

关键词: 石英, 甲烷, 巨正则蒙特卡罗, 超额吸附量, 吸附

Abstract: The adsorption behaviors of methane in quartz have been investigated by using Grand Canonical Monte Carlo simulations,and the influences of different pore sizes,different temperatures,different water contents and different compositions of the methane adsorption on quartz have been discussed.The results show that the excess adsorption of methane increased firstly and then decreased with the increase of the pressure,and increased with the decrease of the pore size.The interaction energy between methane and quartz decreased with the increase of pressure or the decrease of pore size,indicating that the adsorption sites of methane adsorption on the quartz transferred from the higher energy to the lower energy.With the increase of temperature,the isosteric heats of the methane decreased and the adsorption sites of methane adsorption on the quartz transferred from higher energy to lower energy,resulting in the decrease of methane adsorption capacity.The water molecular in the pore of quartz occupied the pore wall in directional way,which was acted upon by the van der Waals force and Coulomb force,resulting in the molecular water accumulation in the pores.With the increase of temperature,the adsorption sites of methane did not change,indicating that the molecular water only occupy adsorption space of the methane,resulting in the decrease of methane adsorption capacity.The interaction energy between gas and quartz decreased in the following order:nitrogen >methane >carbon dioxide,indicating that the adsorption capacity decreased in the following order:carbon dioxide >methane > nitrogen.The mole fraction of nitrogen or carbon dioxide in the gas phase increased,the mole fraction of gaseous methane would decrease,the adsorption sites of methane would change and the adsorption space of methane would deduce,resulting in the decrease of methane adsorption capacity.

Key words: Quartz, Methane, Grand Canonical Monte Carlo, Excess adsorption, Adsorption

中图分类号: 

  • TE312

[1]U.S.Energy Information Administration (EIA),2013.Technically Recoverable Shale Oil and Shale Gas Resources:An Assessment of 137 Shale Formations in 41 Countries Outside the United States[EB/OL].http://www.eia.gov/analysis/studies/worldshalegas,2013-8-12.
[2]Zhang Jinchuan,Jin Zhijun,Yuan Mingsheng.Reservoiring mechanism of shale gas and its distribution[J].Natural Gas Industry,2004,24(7):15-18.[张金川,金之钧,袁明生.页岩气成藏机理和分布[J].天然气工业,2004,24(7):15-18.]
[3]Curtis J B.Fractured shale gas systems[J].AAPG Bulletin,2002,86(11):1921-1938.
[4]Liu X,Xiong J,Liang L.Investigation of pore structure and fractal characteristics of organic-rich Yanchang Formation shale in central China by nitrogen adsorption/desorption analysis[J].Journal of Natural Gas Science and Engineering,2015,(22):62-72.
[5]Xiong J,Liu X,Liang L.Experimental study on the pore structure characteristics of the Upper Ordovician Wufeng Formation shale in the southwest portion of the Sichuan Basin,China[J].Journal of Natural Gas Science and Engineering,2015,(22):530-539.
[6]Liang L,Xiong J,Liu X.Mineralogical,microstructural and physiochemical characteristics of organic-rich shales in the Sichuan Basin,China[J].Journal of Natural Gas Science and Engineering,2015,(26):1200-1212.
[7]Xiong Jian,Liu Xiangjun,Liang Lixi.Pore structure and fractal characteristics of Longmaxi Formation shale in the Changning region of Sichuan Basin[J].Geological Science and Technology Information,2015,34(4):70-77.[熊健,刘向君,梁利喜.四川盆地长宁构造地区龙马溪组页岩孔隙结构及其分形特征[J].地质科技情报,2015,34(4):70-77.]
[8]Xiong Jian,Liu Xiangjun,Liang Lixi,et al.Study on the differences of reservoir characteristics of the Upper and the Lower of Longmaxi Formation shale in the Changning region of Sichuan Basin[J].Journal of Northwest University:Natural Science Edition,2015,45(4):623-630.[熊健,刘向君,梁利喜,等.四川盆地长宁地区龙马溪组上、下段页岩储层差异研究[J].西北大学学报:自然科学版,2015,45(4):623-630.]
[9]Ji Liming,Ma Xiangxian,Xia Yanqing..Relationship between methane adsorption capacity of clay minerals and micropore volume[J].Natural Gas Geoscience,2014,25(2):141-152.[吉利明,马向贤,夏燕青,等.黏土矿物甲烷吸附性能与微孔隙体积关系[J].天然气地球科学,2014,25(2):141-152.]
[10]Titiloye J O,Skipper N T.Monte Carlo and molecular dynamics simulations of methane in potassium montmorillonite clay hydrates at elevated pressures and temperatures[J].Journal of Colloid and Interface Science,2005,282(2):422-427.
[11]Yang X,Yue X.Adsorption and structure of Lennard-Jones model fluid in slit-like amorphous silica nanopores[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2007,301(1):166-173.
[12]Liu Y,Wilcox J.CO2 adsorption on carbon models of organic constituents of gas shale and coal[J].Environmental Science & Technology,2010,45(2):809-814.
[13]Liu Y,Wilcox J.Effects of surface heterogeneity on the adsorption of CO2 in microporous carbons[J].Environmental Science & Technology,2012,46(3):1940-1947.
[14]Liu Y,Wilcox J.Molecular simulation of CO2 adsorption in micro-and mesoporous carbons with surface heterogeneity[J].International Journal of Coal Geology,2012,(104):83-95.
[15]Billemont P,Coasne B,De Weireld G.Adsorption of carbon dioxide,methane,and their mixtures in porous carbons:Effect of surface chemistry,water content,and pore disorder[J].Langmuir,2013,29(10):3328-3338.
[16]COD.Crystallography Open Database,http://www.crystallography.net/index.php
[17]Brill R,Hermann C,Peters C.Studien über chemische Bindung mittels Fourieranalyse III:Die Bindung im Quarz[J].Naturwissenschaften,1939,27(40):676-677.
[18]Martin M G,Siepmann J I.Transferable potentials for phase equilibria.1.United-atom description of n-alkanes[J].The Journal of Physical Chemistry B,1998,102(14):2569-2577.
[19]Potoff J J,Siepmann J I.Vapor-liquid equilibria of mixtures containing alkanes,carbon dioxide,and nitrogen[J].AIChE Journal,2001,47(7):1676-1682.
[20]Berendsen H J C,Grigera J R,Straatsma T P.The missing term in effective pair potentials[J].Journal of Physical Chemistry,1987,91(24):6269-6271.
[21]Harris J G,Yung K H.Carbon dioxide's liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model[J].The Journal of Physical Chemistry,1995,99(31):12021-12024.
[22]Sun Xiaoyan,Li Jianwei,Li yingxia,et al.Adsorption of Benzene and Propene in β Zeolite by Grand Canonical Monte Carlo Simulation[J].Acta Chimica Sinica,2008,66(15):1810-1814.[孙晓岩,李建伟,李英霞,等.苯与丙烯在β分子筛上吸附行为的蒙特卡罗研究[J].化学学报,2008,66(15):1810-1814.]
[23]Soave G.Equilibrium Constants from a Modified Redlich-Kwong Equation of State[J].Chemical Engineering Science,1972,27(6):1197-1203.
[24]Talu O,Myers A L.Molecular simulation of adsorption:Gibbs dividing surface and comparison with experiment[J].AIChE Journal,2001,47(5):1160-1168.

[1] 龚德瑜, 张越迁, 郭文建, 宋志华, 卢山, 吴卫安. 次生生物甲烷与生物降解作用的判识——以准噶尔盆地腹部陆梁油气田为例[J]. 天然气地球科学, 2019, 30(7): 1006-1017.
[2] 卫延召, 宋志华, 奇瑞, 王伟, 龚德瑜, 王峰. 准噶尔盆地陆梁隆起东部滴北凸起天然气成因来源再认识[J]. 天然气地球科学, 2019, 30(6): 840-849.
[3] 许崇祯, 张公社, 殷嘉伟, 纪国法, 李新发. 考虑解吸—吸附的页岩气藏压裂水平井综合渗流模型[J]. 天然气地球科学, 2019, 30(1): 111-118.
[4] 王香增,张丽霞,姜呈馥,尹锦涛,高潮,孙建博,尹娜,薛莲花. 鄂尔多斯盆地差异抬升对长7页岩孔隙的影响——以东南部甘泉地区和南部渭北隆起地区为例[J]. 天然气地球科学, 2018, 29(5): 597-605.
[5] 秦胜飞,周国晓. 气田水对甲烷氢同位素分馏作用[J]. 天然气地球科学, 2018, 29(3): 311-316.
[6] 左罗,蒋廷学,罗莉涛,吴魏,赵昆. 基于渗流新模型分析页岩气流动影响因素及规律[J]. 天然气地球科学, 2018, 29(2): 296-304.
[7] 唐鑫, 朱炎铭, 郭远臣, 刘宇, 周小艺. 四川盆地龙马溪组页岩储层孔隙及伊利石甲烷吸附特征[J]. 天然气地球科学, 2018, 29(12): 1809-1816.
[8] 毛港涛, 赖枫鹏, 木卡旦斯·阿克木江, 蒋志宇. 沁水盆地赵庄井田煤层气储层水锁伤害影响因素[J]. 天然气地球科学, 2018, 29(11): 1647-1655.
[9] 杨文新,李继庆,苟群芳. 四川盆地焦石坝地区页岩吸附特征室内实验[J]. 天然气地球科学, 2017, 28(9): 1350-1355.
[10] 马东民,李沛,张辉,李卫波,杨甫. 长焰煤中镜煤与暗煤吸附/解吸特征对比[J]. 天然气地球科学, 2017, 28(6): 852-862.
[11] 张大智. 利用氮气吸附实验分析致密砂岩储层微观孔隙结构特征——以松辽盆地徐家围子断陷沙河子组为例[J]. 天然气地球科学, 2017, 28(6): 898-908.
[12] 梁金强,付少英,陈芳,苏丕波,尚久靖,陆红锋,方允鑫. 南海东北部陆坡海底甲烷渗漏及水合物成藏特征[J]. 天然气地球科学, 2017, 28(5): 761-770.
[13] 崔亚星,熊伟,胡志明,左罗,高树生. 等温条件下页岩储层视渗透率随压力变化规律研究[J]. 天然气地球科学, 2017, 28(4): 514-520.
[14] 郗兆栋,唐书恒,李俊,李雷. 沁水盆地中东部海陆过渡相页岩孔隙结构及分形特征[J]. 天然气地球科学, 2017, 28(3): 366-376.
[15] 康毅力,陈益滨,李相臣,游利军,陈明君. 页岩粒径对甲烷吸附性能影响[J]. 天然气地球科学, 2017, 28(2): 272-279.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 郑建京;吉利明;孟仟祥;. 准噶尔盆地天然气地球化学特征及聚气条件的讨论[J]. 天然气地球科学, 2000, 11(4-5): 17 -21 .
[2] 付广;杨勉;. 盖层发育特征及对油气成藏的作用[J]. 天然气地球科学, 2000, 11(3): 18 -24 .
[3] 张延敏, . 1996~1999年世界天然气产量[J]. 天然气地球科学, 2000, 11(3): 44 -45 .
[4] 付广;王剑秦. 地壳抬升对油气藏保存条件的影响[J]. 天然气地球科学, 2000, 11(2): 18 -23 .
[5] 陈建阳,张志杰,于兴河 . AVO技术在水合物研究中的应用及应注意的问题[J]. 天然气地球科学, 2005, 16(1): 123 -126 .
[6] 王先彬;妥进才;周世新;李振西;张铭杰;闫宏;. 论天然气形成机制与相关地球科学问题[J]. 天然气地球科学, 2006, 17(1): 7 -13 .
[7] 倪金龙;夏斌;. 济阳坳陷坡折带组合类型及石油地质意义[J]. 天然气地球科学, 2006, 17(1): 64 -68 .
[8] 王茹;. 胜坨油田两期成藏地球化学特征及成藏过程分析[J]. 天然气地球科学, 2006, 17(1): 133 -136 .
[9] 王宇超;牛滨华;张年春;马龙;王建华;. 转换波三维初至静校正方法在SLG气区的应用[J]. 天然气地球科学, 2006, 17(2): 272 -275 .
[10] 贾成业;夏斌;王核;张胜利;. 东海陆架盆地丽水凹陷构造演化及油气地质分析[J]. 天然气地球科学, 2006, 17(3): 397 -401 .