天然气地球科学

• 天然气开发 • 上一篇    下一篇

页岩气藏水平井分段多簇压裂复杂裂缝产量模拟

胡永全1,蒲谢洋1,赵金洲2,杨文露1   

  1. 1.西南石油大学石油与天然气工程学院,四川 成都 610500;2.西南石油大学油气藏地质及开发工程国家重点实验室,四川 成都 610500
  • 收稿日期:2016-02-02 修回日期:2016-04-08 出版日期:2016-08-10 发布日期:2016-08-10
  • 作者简介:胡永全(1964-),男,重庆璧山人,教授,主要从事油气田增产改造新理论与新技术研究. E-mail:stimswpi@163.com.
  • 基金资助:
    国家自然科学基金重大项目“页岩气动态随机裂缝控制与无水压裂液研究”(编号:51490653);西南石油大学研究生创新基金“基于多尺度流动特征的页岩气缝网压裂产能模拟”(编号:CXJJ2015029)联合资助.

Production simulation of staged multi-cluster fractured horizontal#br# wells with complex hydraulic fracture in shale gas reservoirs

Hu Yong-quan1,Pu Xie-yang1,Zhao Jin-zhou2,Yang Wen-lu1   

  1. 1.School of Petroleum & Natural Gas,Southwest Petroleum University,Chengdu 610500,China;
    2.State Key Laboratory of Reservoir Geology & Exploitation,Southeast Petroleum University, Chengdu 610500,China
  • Received:2016-02-02 Revised:2016-04-08 Online:2016-08-10 Published:2016-08-10

摘要: 现有页岩储层压裂水平井产能预测模型均采用与实际不符的平面裂缝假设,压后产能预测不准确。针对页岩储层压裂裂缝非对称非平面的实际复杂形态,基于流体扩散理论和压降叠加原理,建立了气藏渗流和裂缝渗流模型,采用空间离散建立了产量计算模型,通过数值分析方法求解,对页岩气藏水平井分段多簇压裂复杂裂缝产量进行了模拟。结果表明:真实非平面复杂裂缝产量远高于理想平面裂缝产量;天然裂缝对非平面裂缝形态和产量具有重要影响;三簇同时延伸形成的裂缝,中间缝产量比外侧缝产量低,产量差距在生产初期较大,随着时间增加,差距减小。外侧裂缝对导流能力比中间缝敏感;随着裂缝导流能力的增加,产量增加,但并非线性关系,增加的幅度逐渐减小。

关键词: 页岩气, 分段多簇压裂, 非平面裂缝, 水平井, 产量

Abstract: The existing productivity prediction models of fractured horizontal well for shale gas reservoir are based on the assumption of planar hydraulic fracture.However,the actual geometry of hydraulic fracture in shale reservoirs is complex.So the productivity prediction is not accurate.In view of the actual asymmetric non-planar complex fracture geometry in shale gas reservoir,a gas reservoir seepage model and a hydraulic fracture seepage model are established.A new productivity model is set up with the semi-analytical method.By numerical analysis way,we calculated the production of staged multi-cluster fractured horizontal well with complex hydraulic fracture.The results of production simulation indicate that the gas production from real non-planar fracture is much greater than the gas production from ideal planar fracture.Natural fractures have an enormous impact on the non-planar fracture geometry and well productivity.After three fractures extend at the same time,the production of middle one is smaller than the production of lateral ones,and production gap is larger at the beginning of production.With the increase of time,the production gap becomes smaller.The lateral fractures are more sensitive to fracture conductivity than the middle one.With the increase of fracture conductivity,the production of non-planar fractures increases.But it is not a linear relationship,the increasing amplitude decreases.

Key words: Shale gas, Staged multi-cluster fracturing, Non-planar fracture, Horizontal well, Production

中图分类号: 

  • TE121.1

[1]Zhao Jinzhou,Chen Xiyu,Liu Changyu,et al.The analysis of crack interaction in multi-stage horizontal fracturing[J].Natural Gas Geoscience,2015,26(3):533-538.[赵金洲,陈曦宇,刘长宇,等.水平井分段多簇压裂缝间干扰影响分析[J].天然气地球科学,2015,26(3):533-538.]
[2]Li Yongming,Wang Yanchen,Zhao Jinzhou,et al.Calculation model of kink angle in shale gas reservoirs with consideration of stree interference[J].Natural Gas Geoscience,2015,26(10):1979-1983,1998.[李勇明,王琰琛,赵金洲,等.考虑多裂缝应力干扰的页岩储层压裂转向角计算模型[J].天然气地球科学,2015,26(10):1979-1983,1998.]
[3]Warpinski N R,Kramm R C,Heinze J R,et al.Comparison of Single and Dual-array Micro-seismic Mapping Techniques in the Barnett Shale[R].SPE Annual Technical Conference and Exhibition,9-12 October,Dallas,Texas,USA.SPE95568,2005.
[4]Cipolla C L,Wallace J.Stimulated Reservoir Volume:A Misapplied Concept[R].SPE Hydraulic Fracturing Technology Conference,4-6 February,The Woodlands,Texas,USA.SPE168596.2014.
[5]Wu K,Olson J E.Mechanics Analysis of Interaction Between Hydraulic and Natural Fractures in Shale Reservoirs[R].SPE/AAPG/SEG Unconventional Resources Technology Conference,25-27 August,Denver,Colorado,USA.SPE 1922946.2014.
[6]Wu K,Olson J E.Investigation of the impact of fracture spacing and fluid properties for Interfering simultaneously or sequentially generated hydraulic fractures[J].SPE Production and Operation,2013,28(4):427-436.
[7]Wu K,Olson J E.Simultaneous multi-frac treatments:Fully coupled fluid flow and fracture mechanics for horizontal wells[J].SPE Journal,2013,20(2):337-346.
[8]Yu Wei,Zhang Tiantian,Du Song,et al.Numerical study of the effect of uneven proppant distribution between multiple fractures on shale gas well performance[J].Fuel,2015,141(2):189-198.
[9]Xu Jiancun,Guo Chaohua,Wei Mingzhen,et al.Production performance analysis for composite shale gas reservoir considering multiple transport mechanisms[J].Journal of Natural Gas Science and Engineering,2015,26(3):382-395.
[10]Li Longlong,Yao Jun,Li Yang,et al.Productivity calculation and distribution of staged multi-cluster fractured horizontal wells[J].Petroleum Exploration and Development,2014,41(4):457-461.[李龙龙,姚军,李阳,等.分段多簇压裂水平井产能计算及其分布规律[J].石油勘探与开发,2014,41(4):457-461.]
[11]Zeng Hui,Yao Jun,Fan Dongyan,et al.Analysis of influencing factors about multi-stage fractured horizontal well productivity in shale gas reservoir[J].Xinjiang Petroleum Geology,2014,35(3):324-328.[曾慧,姚军,樊冬艳,等.页岩气藏分段压裂水平井产能影响因素分析[J].新疆石油地质,2014,35(3):324-328.]
[12]Fan Dongyan,Yao Jun,Sun Hai,et al.Transient flow model of stage-fractured horizontal wells in shale gas reservoirs[J].Journal of China University of Petroleum,2014,38(5):116-123.[樊冬艳,姚军,孙海,等.页岩气藏分段压裂水平井不稳定渗流模型[J].中国石油大学学报:自然科学版,2014,38(5):116-123.]
[13]Xie Weiyang,Li Xiaoping.Steady productivity of horizontal well in hydraulic fracture induced shale gas reservoir[J].Natural Gas Geoscience,2012,23(2):387-392.[谢维扬,李晓平.水力压裂缝导流的页岩气藏水平井稳产能力研究[J].天然气地球科学,2012,23(2):387-392.]
[14]Xie Weiyang,Li Xiaoping,Zhang Liehui,et al.Transient production decline analysis for multi-fractured horizontal well in shale gas reservoirs[J].Natural Gas Geoscience,2015,26(2):384-390.[谢维扬,李晓平,张烈辉,等.页岩气多级压裂水平井不稳定产量递减探讨[J].天然气地球科学,2015,26(2):384-390.]
[15]Wu R,Kresse O,Weng X,et al.Modeling of Interaction of Hydraulic Fractures in Complex Fracture Networks[R].SPE Hydraulic Fracturing Technology Conference,6-8 February,The Woodlands,Texas,USA.SPE 152052.2012.
[16]Gringarten A C.The Use of Source and Green’s Functions in Solving Unsteady-flow Problems in Reservoirs[A].SPE 3818.1973.
[17][KG*5/6]Guo Jianchun,Liu Heng,Zeng Fanhui.Influence of varying fracture width on fractured wells long-term productivity[J].Journal of China University of Petroleum,2015,39(1):111-115.[郭建春,刘恒,曾凡辉.裂缝变缝宽形态对压裂井长期产能的影响[J].中国石油大学学报:自然科学版,2015,39(1):111-115.]
[18]Wu K.Numerical Modeling of Complex Hydraulic Fracture Development in Unconventional Reservoirs[D].USA:The University of Texas at Austin,2014.

[1] 王科, 李海涛, 李留杰, 张庆, 补成中, 王志强. 3种常用页岩气井经验递减方法——以四川盆地威远区块为例[J]. 天然气地球科学, 2019, 30(7): 946-954.
[2] 苟启洋, 徐尚, 郝芳, 舒志国, 杨峰, 陆扬博, 张爱华, 王雨轩, 程璇, 青加伟, 高梦天. 基于灰色关联的页岩储层含气性综合评价因子及应用——以四川盆地焦石坝区块为例[J]. 天然气地球科学, 2019, 30(7): 1045-1052.
[3] 位云生, 贾爱林, 郭智, 孟德伟, 王国亭. 致密砂岩气藏多段压裂水平井优化部署[J]. 天然气地球科学, 2019, 30(6): 919-924.
[4] 崔春兰, 董振国, 吴德山. 湖南保靖区块龙马溪组岩石力学特征及可压性评价[J]. 天然气地球科学, 2019, 30(5): 626-634.
[5] 王秀平, 牟传龙, 肖朝晖 , 郑斌嵩 , 陈尧 , 王启宇. 鄂西南地区五峰组—龙马溪组连续沉积特征[J]. 天然气地球科学, 2019, 30(5): 635-651.
[6] 黄小青, 王建君, 杜悦, 李林, 张卓. 昭通国家级页岩气示范区YS108区块小井距错层开发模式探讨[J]. 天然气地球科学, 2019, 30(4): 557-565.
[7] 罗红文, 李海涛, 刘会斌, 孙涛, 卢宇, 李颖. 低渗气藏两相渗流压裂水平井温度剖面预测[J]. 天然气地球科学, 2019, 30(3): 389-399.
[8] 曾凡辉, 彭凡, 郭建春, 钟华, 向建华. 考虑页岩缝宽动态变化的微裂缝气体质量传输模型[J]. 天然气地球科学, 2019, 30(2): 237-246.
[9] 张磊, 徐兵祥, 辛翠平, 乔向阳, 穆景福, 许阳, 韩长春. 考虑主裂缝的页岩气产能预测模型[J]. 天然气地球科学, 2019, 30(2): 247-256.
[10] 谢维扬, 刘旭宁, 吴建发, , 张鉴, 吴天鹏, 陈满. 页岩气水平井组产量递减特征及动态监测[J]. 天然气地球科学, 2019, 30(2): 257-265.
[11] 徐加祥, 丁云宏, 杨立峰, 刘哲, 陈挺. 页岩气储层迂曲微裂缝二维重构及多点起裂分析[J]. 天然气地球科学, 2019, 30(2): 285-294.
[12] 郭旭升. 四川盆地涪陵平桥页岩气田五峰组—龙马溪组页岩气富集主控因素[J]. 天然气地球科学, 2019, 30(1): 1-10.
[13] 姜瑞忠, 原建伟, 崔永正, 张伟, 张福蕾, 张海涛, 毛埝宇. 基于TPHM的页岩气藏多级压裂水平井产能分析[J]. 天然气地球科学, 2019, 30(1): 95-101.
[14] 周尚文, 王红岩, 刘浩, 郭伟, 陈浩. 基于Arps产量递减模型的页岩损失气量计算方法[J]. 天然气地球科学, 2019, 30(1): 102-110.
[15] 许崇祯, 张公社, 殷嘉伟, 纪国法, 李新发. 考虑解吸—吸附的页岩气藏压裂水平井综合渗流模型[J]. 天然气地球科学, 2019, 30(1): 111-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 付广;王剑秦. 地壳抬升对油气藏保存条件的影响[J]. 天然气地球科学, 2000, 11(2): 18 -23 .
[2] 周兴熙;. 库车油气系统油气藏相态分布及其控制因素[J]. 天然气地球科学, 2004, 15(3): 205 -213 .
[3] 黄安敏;裴建翔;陈志宏;李绪深;李林;. 油气储层预测技术在琼东南盆地BD13区的应用[J]. 天然气地球科学, 2006, 17(4): 518 -522 .
[4] 刘春慧;金振奎;朱桂芳;王庆东;张建良. . 准噶尔盆地东部吉木萨尔凹陷二叠系梧桐沟组储层物性特征及控制因素[J]. 天然气地球科学, 2007, 18(3): 375 -379 .
[5] 张顺存,;王凌;石新璞;方琳浩,;董文举,;孔玉华 . 准噶尔盆地腹部陆西地区石炭系火山岩储层的物性特征及其与电性的关系[J]. 天然气地球科学, 2008, 19(2): 198 -203 .
[6] 张朝;张廷山;魏祥峰;戴传瑞;王秀林 . 也门X区块下白垩统沉积相分析[J]. 天然气地球科学, 2008, 19(06): 835 -839 .
[7] 朱维耀;宋洪庆; 何东博;王明 ;贾爱林;胡永乐 . 含水低渗气藏低速非达西渗流数学模型及产能方程研究[J]. 天然气地球科学, 2008, 19(05): 685 -689 .
[8] 陈凤喜 王勇 张吉 杨勇. 鄂尔多斯盆地苏里格气田盒8气藏开发有利区块优选研究[J]. 天然气地球科学, 2009, 20(1): 94 -99 .
[9] 成永生 陈松岭. 南堡凹陷外围地区古生界地层油气成藏分析[J]. 天然气地球科学, 2009, 20(1): 108 -112 .
[10] 白斌, 邹才能, 朱如凯, 翟文亮, 刘柳红, 戴朝成, 张健, 杜红权, 毛治国. 利用露头、自然伽玛、岩石地球化学和测井地震一体化综合厘定层序界面——以四川盆地上三叠统须家河组为例[J]. 天然气地球科学, 2010, 21(1): 78 -86 .