天然气地球科学

• 非常规天然气 • 上一篇    下一篇

下扬子地区二叠系海陆过渡相页岩孔隙体系特征

曹涛涛1,2,宋之光3,罗厚勇1,周圆圆4,王思波3   

  1. 1.中国石化石油勘探开发研究院无锡石油地质研究所,江苏 无锡 214126;
    2.南京大学地球科学与工程学院,江苏 南京 210093;
    3.中国科学院广州地球化学研究所,广东 广州 510640;
    4.中国石油大学(北京)地球科学学院,北京 102249
  • 收稿日期:2016-02-19 修回日期:2016-04-08 出版日期:2016-07-10 发布日期:2016-07-10
  • 作者简介:曹涛涛(1987-),男,河南商丘人,博士后,主要从事页岩储集物性及含气性研究. E-mail:515165359@163.com.
  • 基金资助:
    国家重点基础研究发展计划(973)项目(编号:2012CB214704);国家自然科学基金项目(编号:41273058);国家油气重大专项(编号:2011ZX05008-002-20)联合资助.

Pore system characteristics of Permian transitional shale reservoirin the Lower Yangtze region,China

Cao Tao-tao1,2,Song Zhi-guang3,Luo Hou-yong1,Zhou Yuan-yuan4,Wang Si-bo3   

  1. 1.Wuxi Research Institute of Petroleum Geology,SINOPEC,Wuxi 214126,China;
    2.School of Earth Science and Engineering,Nanjing University,Nanjing 210093,China;
    3.Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,Guangzhou 510640,China;
    4.College of Geosciences,China University of Petroleum,Beijing 102249,China
  • Received:2016-02-19 Revised:2016-04-08 Online:2016-07-10 Published:2016-07-10

摘要: 下扬子地区二叠系发育一套海陆过渡相泥页岩,是目前页岩气勘探的重点层位之一。针对其微观孔隙体系及影响因素研究较少的现状,对皖南地区野外露头和岩心样品开展扫描电镜、氩离子抛光扫描电镜、压汞及氮气吸附实验分析。结果表明:二叠系页岩主要组分为有机质、石英、伊利石、方解石和黄铁矿,其中黄铁矿多呈草莓体形态与有机质共存,有机质则呈填隙状、薄膜状、条带状和壳体状分布在页岩中。二叠系页岩基本孔隙类型为无机矿物孔(晶间孔、粒间边缘孔、粒内孔和黏土矿物层间孔)、有机孔和微裂缝,其中有机孔和微裂缝是优势孔隙类型。不同有机质颗粒中孔隙发育情况差异很大,可能与有机质类型及显微组成有关;在构造应力作用下,有机质与黏土矿物充分混合产生縻棱化而形成与有机质相关的晶间孔和微裂缝。压汞法测试结果显示以微孔和过渡孔为主的页岩具有较高的孔隙度,孔隙连通性好、退汞效率高;而以大孔为主的页岩具有较低的孔隙度,孔隙连通性差、退汞效率低。中大孔的体积百分比随着石英含量的增加而增加;微孔和过渡孔的体积百分比随可溶有机质增加(S1)呈现降低的趋势;縻棱化有机质是页岩比表面积的主要贡献者;黏土矿物含量的增加可能会抑制页岩微孔隙的发育和比表面积的大小,与黏土矿物主要由伊利石和绿泥石组成有关。

关键词: 海陆过渡相, 孔隙体系, 孔隙度, 比表面积, 二叠系, 下扬子地区

Abstract: Permian shale,a set of transitional shale reservoir,is considered as an important shale gas exploration target in the Lower Yangtze region.For the reason of few researches on pore system characteristic and its controlling factors of the shale gas reservoir,SEM,FE-SEM,low-pressure N2 adsorption and mercury intrusion tests were carried out onthe Permian shales from the outcrop and HC well in the South Anhui.The results show the Permian shale mainly consist of organic matter,quartz,illite,calcite and pyrite,of which pyrite occurs as framboids coexisting with organic matter and the organic matter is distributed in shale in stripped,interstitial,thin film and shell shapes.The basic pore types are inorganic mineral pore(intercrystalline pore,intergranular edge pore,intergranular pore,and interlayer pore in clay minerals),organic pore and microfracture,of which organic pore and microfracture are the dominantpore types.In a shale,organic pores are not developed at all in some organic grains but are well developed in other organic grains,which may be related to the types and maceral compositions of kerogen.Under tectonic stress,shale rocks could develop mylonitization phenomenon exhibiting organic grains well blendwith clay minerals,and produce a mass of microfractures and nanopores between organic matter grains and clay minerals.Mercury intrusion tests show that  shalemainly composed of micropore and transition pore has a high porosity,good pore connectivity and high efficiency of mercury withdraw,while the shale mainly dominated bymesopore and macropore has a low porosity,poor pore connectivity and low efficiency of mercury withdraw.The volume percentage of mesopore and marcopore is increasing with the increase of quartz,and that of micropore and transition pore has a decrease tendency along with the increase of soluble organic matter(S1).Organic matter is the main contributor to specific surface area.However,clay minerals could significantly inhibit the numbers of microscopic pore and specific surface area due to the clay minerals being mainly dominated by illite and chlorite.

Key words: Transitional face, Pore system, Porosity, Specific surface area, Permian, Lower Yangtze region

中图分类号: 

  • TE121.1

[1]Curtis J B.Fractured shale-gas systems[J].AAPG Bulletin,2002,86(11):1921-1938.
[2]Jarvie D M,Hill R J,Ruble T E,et al.Unconventional shale-gas systems:The Mississippian Barnett Shale ofnorth-central Texas as one model for thermogenic shale-gas assessment [J].AAPG Bulletin,2007,91(4):475-499.
[3]Wang F P,Reed R M.Pore networks and fluid flow in gas shales[C]//SPE 124253 presented at the Annual Technical
[HJ2mm]Conference and Exhibition,USA:New Orleans,4-7October,2009.
[4]Li Jianzhong,Li Denghua,Dong Dazhong,et al.Comparison and enlightenment on formation condition and distribution characteristics of shale gas between China and U.S.[J].Engineering Sciences,2012,14(6):56-63.[李建忠,李登华,董大忠,等.中美页岩气成藏条件、分布特征差异研究与启示[J].中国工程科学,2012,14(6):56-63.]
[5]Huang Baojia,Shi Rongfu,Zhao Xingbin,et al.Geological conditions of Paleozoic shale gas formation and its exploration potential in the South Anhui,Lower Yangtze area[J].Journal of China Coal Society,2013,38(5):877-882.[黄保家,施荣富,赵幸滨,等.下扬子皖南地区古生界页岩气形成条件及勘探潜力评价[J].煤炭学报,2013,38(5):877-882.]
[6]Zhou Dongsheng,Xu Linfeng,Pan Jiping,et al.Prospect of shale gas exploration in the Upper Permian Longtan Formation in the Yangtze Massif[J].Natural Gas Industry,2012,32(12):6-12.[周东升,许林峰,潘继平,等.扬子地块上二叠统龙潭组页岩气勘探潜力[J].天然气工业,2012,32(12):6-12.]
[7]Cao Taotao,Song Zhiguang,Wang Sibo,et al.Physical Property Characteristics and controlling factors of Permian shale reservoir in the Lower Yangtze platform[J].Natural Gas Geosciences,2015,26(2):341-351.[曹涛涛,宋之光,王思波,等.下扬子二叠系页岩储集物性特征及控制因素[J].天然气地球科学,2015,26(2):341-351.]
[8]Pan Lei,Chen Guihua,Xu Qiang,et al.Pore structure characteristics of Permian organic-rich shale in Lower Yangtze area[J].Journal of China Coal Society,2013,38(5):787-793.[潘磊,陈桂华,徐强,等.下扬子地区二叠系富有机质泥页岩孔隙结构特征[J].煤炭学报,2013,38(5):787-793.]
[9]Huang Baojia,Huang Hao,Jin Qiuyue,et al.Characterization of pores and methane sorption capacity of Permian shales in southeast Anhui,Lower Yangtze region[J].Natural Gas Geoscience,2015,26(8):1516-1624.[黄保家,黄灏,金秋月,等.下扬子皖东南地区二叠系页岩储层特征及甲烷吸附能力[J].天然气地球科学,2015,26(8):1516-1624.]
[10]Wang Zhongpeng,Zhang Jinchuan,Sun Rui,et al.The gas-bearing characteristics analysis of the Longtan Formation transitional shale in Well Xiye 1[J].Earth Science Frontiers,2015,22(2):243-250.[王中鹏,张金川,孙睿,等.西页1井龙潭组海陆过渡相页岩含气性分析[J].地学前缘,2015,22(2):243-250.]
[11]Yuan Ye,Zhao Jingzhou,Er Chuang,et al.The studies of pore types and characteristics of Mesozoic and Upper Paleozoic shales in Ordos Basin[J].Journal of Xi’an Shiyou University:Natural Science,2014,29(2):14-19.[袁野,赵靖舟,耳闯,等.鄂尔多斯盆地中生界及上古生界页岩孔隙类型及特征研究[J].西安石油大学学报:自然科学版,2014,29(2):14-19.]
[12]Chen Ping,Zhang Minqiang,Xu Yongzhe,et al.The shale reservoir characteristics of Dalong formation Upper Permian in Chaohu-Jingxian,Lower Yangtze area[J].Acta petroloica Sinica,2013,29(8):2925-2935.[陈平,张敏强,许永哲,等.下扬子巢湖—泾县地区上二叠统大隆组泥页岩储层特征[J].岩石学报,2013,29(8):2925-2935.]
[13]Li Hengchao,Liu Dayong,Peng Pingan,et al.Tectonic impact on reservoir character of Chongqing and its Neighbor Area[J].Natural Gas Geoscience,2015,26(9):1705-1711.[李恒超,刘大永,彭平安,等.构造作用对重庆及邻区龙马溪组页岩储集空间特征的影响[J].天然气地球科学,2015,26(9):1705-1711.]
[14]Huoduote B B.Coal and Gas Outburst Mechanism[M].Translated by Song Shizhao,Wang Youan,Beijing:China Industry Press:1966.[B.B.霍多特.煤和瓦斯突出[M].宋世钊,王佑安译.北京:中国工业出版社,1966.]
[15]Liang Digang,Guo Tonglou,Chen Jianping,et al.Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions,southern China(Part 2):Geochemical characteristics of four suits of regional marine source rocks,south China[J].Marine Origin Petroleum Geology,2009,14(1):1-15.[梁狄刚,郭彤楼,陈建平,等.中国南方海相生烃成藏研究的若干新进展(二)南方四套区域性海相烃源岩的地球化学特征[J].海相油气地质,2009,14(1):1-15.]
[16]Zhang Hui,Jiao Shujing,Pang Qifa,et al.SEM observation of organic matters in the Eopaleozoic shale in South China[J].Oil and Gas Geology,2015,36(4):675-680.[张慧,焦淑静,庞起发,等.中国南方早古生代页岩有机质的扫描电镜研究.石油与天然气地质,2015,36(4):675-680.]
[17]Slatt R M,O’Brien N R.Pore types in the Barnett and Woodford gas shales:Contribution to understanding gasstorage and migration pathways in fine-grained rocks[J].AAPG Bulletin,2011,95(12):2017-2030.
[18]Loucks R G,Reed R M,Ruppel S C,et al.Spectrum of pore types and networks and a descriptive classification formatrix-related mudrock pores[J].AAPG Bulletin,2012(6):1071-1098
[19]Cao T T,Song Z G,Wang S B,et al.A comparative study of the specific surface area and pore structure of different shales and their kerogens[J].Science China Earth Sciences,2015,58(4):510-522.
[20]Han Shuangbiao,Zhang Jinchuan,Brian Horsfield,et al.Pore types and characteristics of shale gas reservoir:A case study of Lower Paleozoic shale in southeast Chongqing[J].Earth Science Frontiers,2013,20(3):247-253.[韩双彪,张金川,Brian Horsfield,等.页岩气储层孔隙类型及特征研究:以渝东南下古生界为例[J].地学前缘,2013,20(3):247-253.]
[21]Ma Yong,Zhong Ningning,Han Hui,et al.Definition and structure characteristics of pores in mylonitized organic-rich shales[J].Science China Earth Sciences,2014,57(12):3027-3034.
[22]Chalmers G R,Bustin R M,Power I M,et al.Characterization of gas shale pore systems by porosimetry,pycnometry,surface area,and field emission scanning electron microscopy/transmission electron microscopy image analyses:Examples from the Barnett,Woodford,Haynesville,Marcellus,and Doig units[J].AAPG Bulletin,2012,96(6):1099-1119.
[23]Tian H,Pan L,Zhang T W,et al.Pore characterization of organic-rich Lower Cambrian shales in Qiannan Depression of Guizhou Province,Southwestern China[J].Marine and Petroleum Geology,2015,62:28-43.
[24]Yu Bingsong.Classification and characterization of gas shale pore system[J].Earth Science Frontiers,2013,20(4):211-220.[于炳松.页岩气储层孔隙分类与表征[J].地学前缘,2013,20(4):211-220.]
[25]Hunt J M,Lewan M D,Hennet R J-C.Modeling oil generation with time-temperature index graphs based on the Arrhenius equation[J].AAPG Bulletin,1991,75(4):795-807.
[26]Cui Jingwei,Zhu Rukai,Wu Songtao,et al.The effect of pyrite in organic matter enrichment,hydrocarbon generation and expulsion,oil accumulation in shale[J].Geological Review,2013,59(supplement):783-784.[崔景伟,朱如凯,吴松涛,等.黄铁矿在页岩有机质富集、生排烃与页岩油聚集中的作用[J].地质论评,2013,59(增刊):783-784.]
[27]Long Pengyu,Zhang Jinchuan,Tang Xuan,et al.Feature of muddy shale fissure and its effect for shale gas exploration and developemt[J].Natural Gas Geoscience,2011,22(3):523-530.[龙鹏宇,张金川,唐玄,等.泥页岩裂缝发育及其对页岩气勘探和开发的影响[J],天然气地球科学,2011,22(3):523-530.]
[28]Yang Feng,Ning Zhengfu,Hu Changpeng,et al.Characterization of microscopic pore structures in shale reservoirs[J].Acta Petrolei Sinica,2011,34(2):301-311[杨峰,宁正福,胡昌蓬,等.页岩储层微观孔隙结构特征[J].石油学报,2011,34(2):301-311.]
[29]Guo Xusheng,Li Yuping,Liu Ruobing,et al.Characteristics and controlling factors of micro-pore structures of Longmaxi Shale Play in the Jiaoshiba area,Sichuan Basin[J].Natural Gas Industry,2014,34(6):9-16.[郭旭升,李宇平,刘若冰,等.四川盆地焦石坝地区龙马溪组页岩微观孔隙结构特征及其控制因素[J].天然气工业,2014,34(6):9-16.]
[30]Yi Juwen,Jiang Bo,Hou Quanlin,et al.Relationship between nano-scale deformation of coal structure and metamorphic-deformed environments[J].Science Bulletin,2005,50(16):1784-1795.
[31]Chalmers G R L,Bustin R M.Lower Cretaceous gas shales in northeastern British Columbia,Part I:Geological controls on methane sorption capacity[J].Bulletin of Canadian Petroleum Geology,2008,56(1):1-21.
[32]Zhang Xiaodong,Liu Hao,Liu Yanhao,et al.Adsorption respondence of different coal body structures and its influence mechanism[J].Earth Science:Journal of China University of Geosicences,2009,34(5):848-854.[张小东,刘浩,刘炎昊,等.煤体结构差异的吸附响应及其控制机理[J].地球科学:中国地质大学学报,2009,34(5):848-854.]
[33]Yao Huifang,Kang Zhiqin,Li Wei.Deformation and reservoir properties of tectonically deformed coals[J].Petroleum Exploration and Development,2014,41(4).414-420.[要惠芳,康志勤,李伟.典型构造煤变形特征及储集层物性[J].石油勘探与开发,2014,41(4).414-420.]
[34]Zeng W T,Zhang J C,Ding W L,et al.Fracture development in Paleozoic shale of Chongqing area(South China).Part one:Fracture characteristics and comparative analysis of main controlling factors[J].Journal of Asian Earth Sciences,2013,75(10):251-266.
[35]Xu Xiaoqiang,Jiang Chengfu,Gao Dongchen,et al.Characteristics and controlling factors of fractures in Chang 7 shale gas reservoir of Southeastern Ordos Basin[J].Journal of Yanan Unversity:Natural Science Edition,2013,32(4):82-87 [徐小强,姜呈馥,高栋臣,等.鄂尔多斯盆地东南部延长组长7页岩气储层裂缝特征及其控制因素[J].延安大学学报:自然科学版,2013,32(4):82-87.]
[36]Pan L,Xiao X M,Tian H,et al.A preliminary study on the characterization and controlling factors of porosity and pore structure of the Permian shales in Lower Yangtze region[J].Marine and Petroleum Geology,2015,146(7):68-78.
[37]Cao Taotao,Song Zhiguang,Wang Sibo,et al.Characterizing the pore structure in the Silurian and Permian shales of the Sichuan Basin,China[J].Marine and Petroleum Geology,2015,61:140-150.
[38]Ji L M,Zhang T W,Milliken K L,et al.Experimental investigation of main controls on methane adsorption in clay-rich rocks[J].Applied Geochemistry,2012,27(12):2533-2545.

[1] 刘玲, 沃玉进, 孙炜, 陈霞, 徐美娥, 刘力辉. 龙门山前侏罗系沙溪庙组致密砂岩储层叠前地震预测[J]. 天然气地球科学, 2019, 30(7): 1072-1082.
[2] 刘虎, 曹涛涛, 戚明辉, 王东强, 邓模, 曹清古, 程斌, 廖泽文. 四川盆地东部华蓥山地区龙潭组页岩气储层特征[J]. 天然气地球科学, 2019, 30(1): 11-26.
[3] 程鸣, 傅雪海, 张苗, 程维平, 渠丽珍. 沁水盆地古县区块煤系“三气”储层覆压孔渗实验对比研究[J]. 天然气地球科学, 2018, 29(8): 1163-1171.
[4] 游利军, 王哲, 康毅力, 张杜杰. 致密砂岩孔渗对盐析的响应实验研究[J]. 天然气地球科学, 2018, 29(6): 866-872.
[5] 王秀平,牟传龙,肖朝晖,郑斌嵩,陈尧,王启宇,刘惟庆. 湖北鹤峰地区二叠系大隆组黑色岩系特征及成因初探[J]. 天然气地球科学, 2018, 29(3): 382-396.
[6] 王清辉,冯进. 烃源岩TOC测井评价方法及应用——以珠江口盆地文昌组为例[J]. 天然气地球科学, 2018, 29(2): 251-258.
[7] 孙东, 石小茜, 王振卿, 陈利新, 王靖, 孙甲庆, 代冬冬, 房启飞. 塔里木盆地哈拉哈塘地区二叠系火成岩体对下伏地层地震成像影响[J]. 天然气地球科学, 2018, 29(12): 1781-1787.
[8] 靳子濠, 周立宏, 操应长, 付立新, 李宏军, 楼达, 孙沛沛, 冯建园, 远光辉, 王铸坤. 渤海湾盆地黄骅坳陷二叠系砂岩储层储集特征及成岩作用[J]. 天然气地球科学, 2018, 29(11): 1595-1607.
[9] 李阳,李树同,牟炜卫,闫灿灿. 鄂尔多斯盆地姬塬地区长6段致密砂岩中黏土矿物对储层物性的影响[J]. 天然气地球科学, 2017, 28(7): 1043-1053.
[10] 郗兆栋,唐书恒,李俊,李雷. 沁水盆地中东部海陆过渡相页岩孔隙结构及分形特征[J]. 天然气地球科学, 2017, 28(3): 366-376.
[11] 康毅力,陈益滨,李相臣,游利军,陈明君. 页岩粒径对甲烷吸附性能影响[J]. 天然气地球科学, 2017, 28(2): 272-279.
[12] 邹才能, 赵群, 董大忠, 杨智, 邱振, 梁峰, 王南, 黄勇, 端安详, 张琴, 胡志明. 页岩气基本特征、主要挑战与未来前景[J]. 天然气地球科学, 2017, 28(12): 1781-1796.
[13] 韩宝,王昌伟,盛世锋,庞燕青. 准噶尔盆地中拐—五区二叠系不整合面对油气成藏控制作用[J]. 天然气地球科学, 2017, 28(12): 1821-1828.
[14] 刘洁,张建中,孙运宝,赵铁虎. 南海神狐海域天然气水合物储层参数测井评价[J]. 天然气地球科学, 2017, 28(1): 164-172.
[15] 董大忠, 王玉满, 黄旭楠, 张晨晨, 管全中, 黄金亮, 王淑芳, 李新景. 中国页岩气地质特征、资源评价方法及关键参数[J]. 天然气地球科学, 2016, 27(9): 1583-1601.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张水昌,赵文智,王飞宇,陈建平,肖中尧,钟宁宁,宋孚庆. 塔里木盆地东部地区古生界原油裂解气成藏历史分析――以英南2气藏为例[J]. 天然气地球科学, 2004, 15(5): 441 -451 .
[2] 郑军卫. 1991~2000年世界天然气生产一览表(108m3)[J]. 天然气地球科学, 2002, 13(3-4): 73 -81 .
[3] 胡 斌,李广之,吴向华,邓天龙 . 岩屑荧光录井技术及荧光指标量化方法[J]. 天然气地球科学, 2007, 18(1): 121 -124 .
[4] . 缘何说21世纪是天然气时代[J]. 天然气地球科学, 2000, 11(2): 24 .
[5] 李军;李凤霞;周立英;朱银霞;赵景茂;. 板桥凹陷带油环凝析气藏类型和成藏条件分析[J]. 天然气地球科学, 2003, 14(4): 271 -274 .
[6] 任以发;. 黄桥二氧化碳气田成藏特征与进一步勘探方向[J]. 天然气地球科学, 2005, 16(5): 632 -636 .
[7] 钱诗友;曾溅辉;林会喜;孙锡文 . 辽东东地区石油运移和聚集物理模拟实验及机理分析[J]. 天然气地球科学, 2008, 19(05): 604 -610 .
[8] 晋香兰;张泓. 鄂尔多斯盆地延安组煤层对常规天然气的贡献率研究[J]. 天然气地球科学, 2008, 19(05): 662 -664 .
[9] 马玉波 吴时国 许建龙 吕福亮 付彦辉 袁圣强. 琼东南盆地南部深水凹陷生物礁及碳酸盐岩台地发育模式[J]. 天然气地球科学, 2009, 20(1): 119 -124 .
[10] 付小东 秦建中 腾格尔 王小芳. 固体沥青——反演油气成藏及改造过程的重要标志[J]. 天然气地球科学, 2009, 20(2): 167 -173 .