天然气地球科学

• 天然气开发 • 上一篇    下一篇

裂缝气藏水侵机理及对开发影响实验研究

胡勇1,2,李熙喆1,2,万玉金1,2,焦春艳1,2,徐轩1,2,郭长敏1,2,敬伟3   

  1. 1.中国石油勘探开发研究院廊坊分院,河北 廊坊 065007;
    2.中国石油天然气集团公司天然气成藏与开发重点实验室,河北 廊坊 065007;
    3.中国石油青海油田分公司勘探开发研究院,甘肃 敦煌 736200
  • 收稿日期:2015-07-07 修回日期:2015-09-04 出版日期:2016-05-10 发布日期:2016-05-10
  • 作者简介:胡勇(1978-),男,重庆人,高级工程师,在读博士,主要从事石油天然气开发与实验研究. E-mail: huy69@petrochina.com.cn.
  • 基金资助:
    国家科技重大专项项目“致密砂岩气有效开发评价技术”(编号:2011ZX05013-002)资助.

The experimental study of water invasion mechanism in fracture and the influence on the development of gas reservoir

Hu Yong1,2,Li Xi-zhe1,2,Wan Yu-jin1,2,Jiao Chun-yan1,2,Xu Xuan1,2,Guo Chang-min1,2,Jing Wei3   

  1. 1.Langfang Branch,Research Institute of Exploration and Development,PetroChina,Langfang 065007,China;
    2.The Key Laboratory of Gas Reservoir Formation and Development,Langfang 065007,China;
    3.Petrochina Qinhai Oilfield Company,Dunhuang 736200,China
  • Received:2015-07-07 Revised:2015-09-04 Online:2016-05-10 Published:2016-05-10

摘要: 针对裂缝—孔隙型气藏水侵规律及影响气藏采出程度机理的认识难题,采用物理模拟实验技术,开展了贯通水平裂缝条件下的水侵规律实验、储层基质渗吸水实验以及储层基质渗吸水后对储层供气机理的影响实验,明确了储层基质水侵与裂缝水侵的区别,认识了裂缝—孔隙型边底水气藏水侵规律及其对气藏产能以及采收率的影响机理,即裂缝水侵过程中边底水会沿裂缝快速突进、同时储层基质会渗吸水、基质渗吸水后减少气相渗流通道,从而增加储层基质气相渗流阻力,降低气藏稳产能力和最终采出程度,该项机理认识揭示了裂缝气藏水侵后导致气井产量、最终采出程度大幅度下降的主要原因。在上述机理认识基础上,进一步研究了贯通裂缝水侵前沿推进速度与储层物性、水体大小的关系,分类测试了不同渗透率储层基质渗吸水的能力,模拟评价了不同渗吸水方式和渗吸水量对气藏储层稳产能力和最终采出程度的影响,研究成果可以为我国塔里木盆地迪那气田、克深气田以及四川盆地磨溪龙王庙气藏科学开发提供技术支持。

关键词: 裂缝—孔隙型气藏, 边底水, 水侵机理, 基质渗吸水, 实验研究

Abstract: Aimed at water invasion law in fracture-pore gas reservoir and influencing factors of recovery percent of gas reservoir,the physical simulation experiment technique was used in the water invasion law experiment of horizontal cut-through fracture,the water imbibition experiment of matrix rock and its impacts on the formation gas supply mechanism experiment.In the paper,difference between the water invasion in matrix rock and fracture is determined.The water invasion law and the influence mechanism of water invasion on gas reservoir productivity and recovery efficiency in fracture-pore edge-bottom water gas reservoir was acquired.In the process of the water invasion into the fractured gas reservoir,while the water is invading into the fracture fast,the water is imbibing into the matrix rock which will result in reduction of gas phase percolation roads,increase of the gas phase percolation resistance of matrix rock and reduction of gas reservoir productivity and ultimate recovery percent of gas reservoir.The knowledge revealed the reduction causes of the gas well productivity and the recovery ratio of gas reservoir after water invasion into the fractured gas reservoir.Based on the above knowledge,the relation of water encroachment frontier advance rate and formation physical property,water body size was studied further.The different permeability matrix rock imbibition capacity was tested.The influence of water imbibition style and imbibition volume on the stable yield and ultimate recovery percent of reserves is evaluated.The study achievements can provide technical support for the development of Dina and Keshen gas reservoir of Tarim Basin and Longwangmiao gas reservoirs in the Moxi block of Sichuan Basin.

Key words: Fracture-pore gas reservoir, Edge-bottom water, Water invasion mechanism, Water imbibition into the matrix rock, Experimental study

中图分类号: 

  • TE122.2+3

[1]Van Golf-Racht T D.Fundamentals of Fractured Reservoir Engineering[M].Amsterdam,Oxford,New York:Elsevier Scientific Publishing Company,1982.
[2]Liu Shuzhi,Sun Aiyin,Huang Bingguang.The prediction method of water influx and formation pressure for a water drive gas reservoir[J].Petroleum Exploration and Development,1999,26(2):79-81,85.[刘蜀知,孙艾茵,黄炳光.水侵气藏水侵量与地层压力预测方法研究[J].石油勘探与开发,1999,26(2):79-81,85.]
[3]Fetkovieh M J.A simplified approaeh to water influx calculations-finite aquifer system[J].Journal of Petroleum Technology,1971,(7):814-828.
[4]Kuo M C T,Des Brisay C L.A Simplified Method for Water Coning Predictions[C].58th Annual Technical Conference and Exhibition held in San Francisco,CA.Oct.5-8.SPE 12067.1983.
[5]Fan Huaicai,Zhong Bing,Liu Yicheng,et al.Studies on transient water invasion mechanism of the triple porosity gas reservoir with bottom-water[J].Natural Gas Geoscience,2015,26(3):556-563.[樊怀才,钟兵,刘义成,等.三重介质底水气藏非稳态水侵规律研究[J].天然气地球科学,2015,26(3):556-563.]
[6]Zhu Weiyao,Ju Yan,Zhao Ming,et al.Spontaneous imbibition mechanism flow through porous media and waterflooding in low permeability fractured sandstone reservoir[J].Acta Petrolei Sinica,2002,23(6):56-59.[朱维耀,鞠岩,赵明.等.低渗透裂缝性砂岩油藏多孔介质渗吸机理研究[J].石油学报,2002,23(6):56-59.]
[7]Hu Yong,Li Xizhe,Lu Xiangguo,et al.Varying law of water saturation in the depletion-drive development of sandstone gas reservoirs[J].Petroleum Exploration and Development,2014,41(6):723-726.[胡勇,李熙喆,卢祥国,等.砂岩气藏衰竭开采过程中含水饱和度变化规律[J].石油勘探与开发,2014,41(6):723-726.]
[8]Hu Yong,Li Xizhe,Wan Yujin,et al.Physical simulation on gas percolation in tight sandstone[J].Petroleum Exploration and Development,2013,40(5):580-584.[胡勇,李熙喆,万玉金,等.致密砂岩气渗流特征物理模拟[J].石油勘探与开发,2013,40(5):580-584.]
[9]Hu Yong,Shao Yang,Lu Yongliang,et al.Experimental study on occurrence models of water in pores and the influencing to the development of tight gas reservoir[J].Natural Gas Geoscience,2011,22(1):176-180.[胡勇,邵阳,陆永亮,等.低渗气藏储层孔隙中水的赋存模式及对气藏开发的影响[J].天然气地球科学,2011,22(1):176-180.]
[10]Fan Huaicai,Zhong Bing,Li Xiaoping,et al.Studies on water invasion mechanism of fractured-watered gas reservoir[J].Natural Gas Geoscience,2012,23(6):1179-1184.[樊怀才,钟兵,李晓平,等.裂缝型产水气藏水侵机理研究[J].天然气地球科学,2012,23(6):1179-1184.]
[11]China National Development and Reform Commission.SY/T 5345-2007 Test Method for Two Phase Relative Permeability in Rock[S].Beijing:China Standard Press,2008.[国家发展与改革委员会.SY/T 5345-2007岩石中两相流体相对渗透率测定方法[S].北京:中国标准出版社,2008.]

[1] 方飞飞, 李熙喆, 高树生, 薛蕙, 朱文卿, 刘华勋, 安为国, 李程辉. 边、底水气藏水侵规律可视化实验研究[J]. 天然气地球科学, 2016, 27(12): 2246-2252.
[2] 胡勇, 徐轩, 李进步, 王继平, 朱秋影, 谢坤, 石林辉. 砂岩气藏充注含气饱和度实验研究[J]. 天然气地球科学, 2016, 27(11): 1979-1984.
[3] 胡勇,李熙喆,陆家亮,朱华银,郭长敏,朱秋影,焦春燕,刘丽. 关于砂岩气藏储层应力敏感性研究与探讨[J]. 天然气地球科学, 2013, 24(4): 827-831.
[4] 胡勇, 邵阳, 陆家亮, 张玉丰. 低渗气藏储层孔隙中水的赋存模式及对气藏开发的影响[J]. 天然气地球科学, 2011, 22(1): 176-181.
[5] 杨学锋, 黄先平, 钟兵, 杜志敏, 张地洪, 郭平. 高含硫气体中元素硫溶解度实验测定及计算方法研究[J]. 天然气地球科学, 2009, 20(3): 416-419.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周兴熙;. 库车油气系统油气藏相态分布及其控制因素[J]. 天然气地球科学, 2004, 15(3): 205 -213 .
[2] Alzenshtat Z;Feinstein S;Miloslavski I(以色列);赵永臻(译);. 俄罗斯鞑靼盆地和彼尔姆盆地古生界储集岩的油――油对比及潜在油源岩[J]. 天然气地球科学, 2000, 11(4-5): 68 -75 .
[3] 肖芝华;胡国艺;李志生. 封闭体系下压力变化对烃源岩产气率的影响[J]. 天然气地球科学, 2007, 18(2): 284 -288 .
[4] 宁 宁;陈孟晋;刘锐娥;孙庆伍;蔺 杰;肖红平;张春林. . 鄂尔多斯盆地东部上古生界石英砂岩储层成岩及孔隙演化[J]. 天然气地球科学, 2007, 18(3): 334 -338 .
[5] 唐洪俊;钟水清;熊继有;甘升平;郭俊;申红涛;蒋静萍;关洁;. 高压低渗气井产能预测方法研究与应用[J]. 天然气地球科学, 2005, 16(4): 540 -543 .
[6] 曹运诚, ;陈多福, ;徐文跃 . 海底天然气渗漏区热传递对天然气水合物形成的影响[J]. 天然气地球科学, 2007, 18(6): 827 -831 .
[7] 张朝;张廷山;魏祥峰;戴传瑞;王秀林 . 也门X区块下白垩统沉积相分析[J]. 天然气地球科学, 2008, 19(06): 835 -839 .
[8] 张雷, 刘招君, 杜江峰, 杨婷, 侯伟. 沾河断陷下白垩统淘淇河组层序地层格架及有利生储盖组合[J]. 天然气地球科学, 2010, 21(1): 100 -106 .
[9] 赵阳, 刘震. 中国东部陆相断陷盆地圈闭勘探特点分析[J]. 天然气地球科学, 2010, 21(2): 276 -280 .
[10] 许运新. 松辽盆地不同类型天然气藏产状特征[J]. 天然气地球科学, 1995, 6(1): 19 -22 .