天然气地球科学

• 天然气地球化学 • 上一篇    下一篇

流体压力对半开放体系有机质模拟生烃产率和镜质体反射率的影响

吴远东1,2,张中宁1,吉利明1,孙丽娜1,2,贺聪1,2,苏龙1,夏燕青1   

  1. 1.甘肃省油气资源研究重点实验室/中国科学院油气资源研究重点实验室,甘肃 兰州 730000;
    2.中国科学院大学,北京 100049
  • 收稿日期:2015-09-07 修回日期:2015-10-26 出版日期:2016-05-10 发布日期:2016-05-10
  • 通讯作者: 吉利明(1963-),男,陕西咸阳人,研究员,博士,主要从事石油地质与微体古生物研究. E-mail:jilimin@lzb.ac.cn.
  • 作者简介:吴远东(1989-),男,四川达州人,博士研究生,主要从事石油与天然气地球化学研究. E-mail:wuyuandong123456@163.com.
  • 基金资助:
    国家科技重大专项(编号:2011ZX05008-002);甘肃省科技计划(编号:1309RTSA041)联合资助.

The changes of hydrocarbon yields and RO for source rock in the semi-open simulation with increasing of fluids pressure

Wu Yuan-dong1,2,Zhang Zhong-ning1,Ji Li-ming1,Sun Li-na1,2,He Cong1,2,Su Long1,Xia Yan-qing1   

  1. 1.Key Laboratory of Petroleum Resources,Gansu Province/Key Laboratory of Petroleum Resources Research,Institute of Geology and Geophysics,Chinese Academy of Sciences,Lanzhou 730000,China;
    2.University of Chinese Academy of Science,Beijing 100049,China
  • Received:2015-09-07 Revised:2015-10-26 Online:2016-05-10 Published:2016-05-10

摘要: 为了解压力对有机质热演化和成烃过程的影响,利用高压生烃模拟仪,在一定半开放体系中,对采自钻孔的泥质烃源岩样品进行了恒压与增压2个系列的生烃模拟实验。恒压系列中,沥青、热解油和气态烃产率高峰分别出现在350℃、520℃和520℃,产率依次为6.17mg/g、12.07mg/g和4.14mL/g,对应镜质体反射率(RO)分别为0.9%、3.0%和3.0%,排烃次数分别为4次、21次和21次。增压系列中,沥青、热解油和气态烃产率高峰分别出现在350℃、500℃和520℃,产率依次为12.56mg/g、24.87mg/g和2.59mL/g,对应RO值分别为1.1%、3.1%和3.1%,对应排烃次数分别为5次、43次和44次。表明在半开放体系中,排烃次数受到温度和排烃压力阈值的共同控制,温度升高引起生烃强度增加,在同一排烃压力阈值条件下,体系内压力不断上升,达到排烃压力阈值上限,导致排烃次数增加,而排烃次数增加可能有利于液态烃的形成。流体压力的升高可能会促进沥青和热解油的形成,导致液态烃产率升高。同时,流体压力的升高也可能不利于气态烃的形成,会降低气态烃产率。流体压力对有机质RO值的影响在不同温度阶段不尽相同,400~500℃区间RO值随流体压力升高明显增加。

关键词: 炭质泥岩, 模拟实验, 流体压力, RO, 半开放体系

Abstract: In order to investigate the process of thermal evolution and hydrocarbons generation of organic matter.Mudstone source rock from drilling was pyrolyzed in simulation with con-pressure and hetero-pressure experiments in semi-open system high pressure instrument.In con-pressure experiments,peak of bitumen,oil,gaseous hydrocarbon yields appeared at 350℃,520℃ and 520℃ respectively,and yields were,in order,6.17mg/g,12.07mg/g and 4.14mL/g.The corresponding RO of residues were 0.9%,3.0% and 3.0%.Times of expelling hydrocarbon were,in order 4,21 and 21.In hetero-pressure experiments,peak of bitumen,oil,gaseous hydrocarbon yields appeared at 350℃,500℃ and 520℃ respectively,and yields were,in order,12.56mg/g,24.87mg/g and 2.59mL/g.The corresponding RO of residues were 1.1%,3.1% and 3.1%.Times of expelling hydrocarbon were,in order 5,43 and 44.Results demonstrate that the times of expelling hydrocarbon were controlled by temperature and threshold of expulsion hydrocarbon pressure.Increasing simulation temperature might enhance hydrocarbon generation intensity,and causing the pressure in the reactor reached the upper limit of the threshold of expulsion hydrocarbon pressure constantly under the same threshold of expulsion hydrocarbon pressure condition,times of expelling hydrocarbon were enhanced at last.And it might promote source rocks yielding liquid hydrocarbons.Increasing the fluids pressure might enhance ource rocks yielding bitumen and oil,increasing the yield of liquid hydrocarbons.At the same time,increasing fluid pressure might reduce the yield of gaseous hydrocarbons,causing the negative influence of gaseous hydrocarbons generation.The influence of fluids pressure to RO is different in different temperature,400-500℃,enlarging RO of organic matter with increasing fluid pressure may be more obvious.

Key words: Carbonaceous mudstone, Simulation experiment, Fluid pressure, RO, Semi-open condition

中图分类号: 

  • TE122.2+3

[1]Lopatian N V.Temperature an d geologic time as factors in coalification[J].Lzvestiya Akademii Nauk SSSR SeriyaGelogicheskaya,1971,21(3):1083-1093.
[2]Waples D W.Time and temperature in petroleum formation:application of Lopatin's method to petroleum exploration[J].AAPG Bulletin,1980,64(6):916-926.
[3]Tissot B P.and Welte D H.Petroleum Formation and Occurrence[M].Berlin:Springer-Verlag,1984.
[4]Monthioux M,Landais P,Monin J C.Comparison between natural and artifical maturation series of humic coals from the Mahakam delta,Indonesia[J].Organic Geochemistry,1985,8(4):275-292.
[5]Monthioux M,Landais P,Durand B.Comparison between extracts from natural and artificial maturation series of Mahakam delta coals[J].Organic Geochemistry,1986,10(1):299-311.
[6]Huang W L.Experimental study of vitrinite maturation:effects of temperature,time,pressure,water,and hydrogen index[J].Organic Geochemistry,1996,24(2):233-241.
[7]Knauss K G,Copenhaver S A,Braun R L,et al.Hydrous pyrolysis of New Albany and Phosphoria shales:Production kinetics of carboxylic acids and light hydrocarbons and interactions between the inorganic and organic chemical systems[J].Organic Geochemistry,1997,27(7):477-496.
[8]Shuai Y,Peng P,Zou Y.Influence of pressure on stable carbon isotope ratio and production yield of  coal-derived methane[J].Fuel,2006,85(5):860-866.
[9]Tao W,Zou Y R,Carr A D,et al.Study of the influence of pressure on enhanced gaseous hydrocarbon yield under high pressure-high temperature coal pyrolysis[J].Fuel,2010,89(11):3590-3597.
[10]Hao F,Li S T,Dong W,et al.Abnormal organic-matter maturation in the Yinggehai Basin,South China Sea:Implications for hydrocarbon expulsion andfluid migration from overpressured systems[J].Journal of Petroleum Geology,2007,21(4):427-444.
[11]Le Bayon R,Brey G P,Ernst W G,et al.Experimental kinetic study of organic matter maturation:time and pressure effects on vitrinite reflectance at 400℃[J].Organic Geochemistry,2011,42(4):340-355.
[12]Le Bayon R,Adam C,Mhlmann R F.Experimentally determined pressure effect on vitrinite reflectance at 450℃[J].International Journal of Coal Geology,2012,92(1):69-81.
[13]Zheng Lunju,Qin Jianzhong,He Sheng,et al.Preliminary study of formation porosity thermocopression simulation experiment of hydrocarbon generation and expulusion[J].Petroleum Geology and Experiment,2009,31(3):296-302,306.[郑伦举,秦建中,何生,等.地层孔隙热压生排烃模拟实验初步研究[J].石油实验地质,2009,31(3):296-302,306.]
[14]Zheng Lunju,Ma Zhongliang,Wang Qiang,et al.Quantitative evaluation of hydrocarbon yielding potential of source rock:application of pyrolysis in finite space[J].Petroleum Geology and Experiment,2011,33(5):452-459.[郑伦举,马中良,王强,等.烃源岩有限空间热解生油气潜力定量评价研究[J].石油实验地质,2011,33(5):452-459.]
[15]Uguna C N,Carr A D,Snape C E,et al.A laboratory pyrolysis study to investigate the effect of water pressure on hydrocarbon generation and maturation of coals in geological basins[J].Organic Geochemistry,2012,52(2):103-113.
[16]Carr A D,Snape C E,Meredith W,et al.The effect of water pressure on hydrocarbon generation reactions:Some inferences from laboratory experiments[J].Petroleum Geoscience,2009,15(1):17-26 .
[17]Landais P,Michels R,Elie M.Are time and temperature the only constraints to the simulation of organic matter maturation[J].Organic Geochemistry,1994,22(3):617-630.
[18]Uguna C N,Snape C E,Meredith W,et al.Retardation of hydrocarbon generation and maturation by water pressure in geological basins:an experimental investigation[J].AAPG Hedberg Series,2012,4(s1):19-37.
[19]Uguna C N,Azri M H,Snape C E,et al.A hydrouspyrolysis study to ascertain how gas yields and the extent of maturation for partially matured source rock and bitumen in isolation compared to their whole source rock[J].Journal of Analytical and Applied Pyrolysis,2013,103(3):268-277.
[20]Uguna C N,Carr A D,Snape C E,et al.High pressure water pyrolysis of coal to evaluate the role of  pressure on hydrocarbon generation and source rock maturation at high maturities under geological conditions[J].Organic Geochemistry,2015,78(1):44-51.
[21]Chen Z H,Ma Z J,Zha M,et al.The effects of high pressure on oil-to-gas cracking during laboratory simulation experiments[J].Journal of Petroleum Geology,2014,37(2):143-162.
[22]Mi J,Zhang S,He K.Experimental investigations about the effect of pressure on gas generation from coal[J].Organic Geochemistry,2014,74(1):116-122.
[23]Xie Xi’nong,Liu Xiaofeng,Hu Xiangyun,et al.Hydrofracturing and associated episodic hydrocarbon-explusion of mudstones in over-pressured basin[J].Geological Science and Technology Information,1998,19(2):60-64.[解习农,刘晓峰,胡祥云,等.超压盆地中泥岩的流体压裂与幕式排烃作用[J].地质科技情报,1998,19(2):60-64.]
[24]Sun L,Tuo J,Zhang M,et al.Formation and development of the pore structure in Chang 7 member oil-shale from Ordos Basin during organic matter evolution induced by hydrous pyrolysis[J].Fuel,2015,158(1):549-557.
[25]Guo Wei,Yu Wenyang,Liu Zhaojun,et al .The burial history of the southern Songliao Basin[J].Journal of Jilin University:Earth Science Edition,2009,39(3):353-360.[郭巍,于文祥,
刘招君,等.松辽盆地南部埋藏史[J].吉林大学学报:地球科学版,2009,39(3):353-360.]
[26]Connan J.Time-temperature relation in oil genesis[J].AAPG Bulletin,1974,58(12):2516-2521.
[27]Price L C,Clayton J L,Rumen L L.Organic geochemistry of the 9.6km Bertha rogers No.1.well,Oklahoma[J].Organic Geochemistry,1981,3(3):59-77.
[28]Jung Feng,Du Jianguo,Wang Wanchun,et al.Research on ultra high pressure high temperature simulation experiments:The influence of high temperature and pressure on organic matter maturation[J].Acta Sedimentologica Sinica,1998,16(3):13-160.[姜峰,杜建国,王万春,等.高温超高压模拟实验研究温压条件下对有机质成熟作用的影响[J].沉积学报,1998,16(3):153-160.]
[29]Wang Chuanyuan,Du Jianguo,Duan Yi,et al.Evolution characteristics of aromatic hydrocarbons under temperature and pressure in deep lithosphere[J].Science in China:Seiesr.D,2007,37(5):644-648.[王传远,杜建国,段毅,等.岩石圈深部温压条件下芳烃的演化特征[J].中国科学:D辑,2007,37(5):644-648.]
[30]Zhao X Z,Jin Q,Jin F M,et al.Origin and accumulation of high-maturity oil and gas in deep parts of the Baxian Depression,Bohai Bay Basin,China[J].Petroleum Science,2013,10(3):303-313.
[31][KG*5/6]Ruble T E.Geochemical investigation of the mechanisms of hydrocarbon generation and accumulation in theUinta Basin[M].Utah:University of Oklahoma,Graduate College,1996.
[32]Lewan M D.Experiments on the role of water in petroleum formation[J].Geochimica et Cosmochirnica Acta,1997,61(17):3691-3723.
[33]Lewan M D,Roy S.Role of water in hydrocarbon generation from Type-I kerogen in Mahogany oil shale of  the Green River Formation[J].Organic Geochemistry,2011,42(1):31-41.
[34]Behar F,Kressmann S,Rudkiewicz J L,et al.Experimental simulation in a confined system and kinetic modelling of kerogen and oil cracking[J].Organic Geochemistry,1992,19(1):173-189.
[35]Hill R J,Tang Y,Kaplan I R.Insights into oil cracking based on laboratory experiments[J].Organic Geochemistry,2003,34(12):1651-1672.
[36]Waples D W.The kinetics of in-reservoir oil destruction and gas formation:Constraints from experimental and empirical data,and from thermodynamics[J].Organic Geochemistry,2000,31(6):553-575.
[37]Zhang Zude.Inorganic Chemistry[M],Hefei:Press of University of Science and Technology of China,2010.[张祖德.无机化学[M],合肥:中国科学技术大学出版社,2010.]
[38]Zhang Shouchun,Zhang Linye,Zha Ming,et al.An experimental simulation on the hydrocarbon quatity generated under pressure suppression[J].Petroleum Geology and Experiment,2008,32(5):522-526.[张守春,张林晔,查明,等.压力抑制条件下生烃定量模拟实验研究——以渤海湾盆地济阳坳陷为例[J].石油实验地质,2008,32(5):522-526.]
[39]March J.Advanced Organic Chemistry[M].New York:McGraw-Hill,1968.
[40]Liu Guangdi,Luo Houfu .Petroleum Geology[M].Beijing:Petroleum Industry Press,2009:134-136.[柳广第,罗厚福.石油地质学[M].北京:石油工业出版社,2009:134-136.]
[41]Lopatin N V.The main stage of petroleum formation (in Russian)[J].Lzvestiya Akademii Nauk SSSR Seriya  Gelogicheskaya,1969,52(6):69-76.
[42]Teichmüller M.Anwendung kohlenpetrographischer Methoden bei der Erdlund Erdgasprospektion[J].Erdl Kohle,1971,24(1):69-76.
[43]Dow W G.Kerogen studies and geological interpretations[J].Journal of Geochemical Exploration,1977,7(1):79-99.
[44]Wang  Zhichao,Mi Jingkui,Li  Xianqing,et al.Current situation and problems of simulation experiment approach of hydrocarbon generation[J].Natural Gas Geoscience,2009,20(4):592-597.[王治朝,米敬奎,李贤庆,等.生烃模拟实验方法现状与存在问题[J].天然气地球科学,2009,20(4):592-597.]
[45]Xiao Zhihua,Hu Guoyi,Li  Zhisheng,et al.An analysis of characteristics of hydrocarbon generation of pyrolysis experiment from source rocks[J].Natural Gas Geoscience,2008,19(4):544-547.[肖芝华,胡国艺,李志生,等.从烃源岩热模拟实验讨论其生烃特征[J].天然气地球科学,2008,19(4):544-547.]
[46]Qiu  Junli,Xia  Yanqing,Lei  Tianzu.Correlation study of pyrolysis product between two different thermal simulation systems[J].Natural Gas Geoscience,2011,22(1):144-148.[邱军利,夏燕青,雷天柱.两种热模拟体系下热解产物的相关性研究[J].天然气地球科学,2011,22(1):144-148.]

[1] 杨娟, 王作栋, 薄海波, 张婷, 吉生军, 王静莹. 下马岭组油页岩热模拟实验抽提物中三芴系列化合物演化特征[J]. 天然气地球科学, 2019, 30(7): 1063-1071.
[2] 康广星, 徐学敏, 汪双清, 杨佳佳, 孙玮琳, 沈斌, 秦婧, 芦苒, 张小涛, 郭望. 古生界干酪根热演化模拟实验[J]. 天然气地球科学, 2019, 30(4): 593-602.
[3] 彭威龙, 胡国艺, 刘全有, 贾楠, 房忱琛, 龚德瑜, 于聪, 吕玥, 王鹏威, 冯子齐. 热模拟实验研究现状及值得关注的几个问题[J]. 天然气地球科学, 2018, 29(9): 1252-1263.
[4] 曾旭, 李剑, 田继先, 王波, 国建英, 沙威.  柴达木盆地腹部晚期构造带成藏模拟实验研究[J]. 天然气地球科学, 2018, 29(9): 1301-1309.
[5] 翁定为,付海峰,包力庆,胥云, 梁天成,张金. 水平井平面射孔实验研究[J]. 天然气地球科学, 2018, 29(4): 572-578.
[6] 段毅,吴应忠,赵阳,曹喜喜,马兰花. 草本沼泽泥炭加水热解产物烃类气体氢同位素特征[J]. 天然气地球科学, 2018, 29(3): 305-310.
[7] 李树同, 姚宜同, 乔华伟, 惠潇, 程党性, 张文选, 牟炜卫. 鄂尔多斯盆地姬塬地区长8致密储层溶蚀作用及其对储层孔隙的定量影响[J]. 天然气地球科学, 2018, 29(12): 1727-1738.
[8] 李玉婷,黄志龙,安成龙,马强,王瑞,辛铭. 三塘湖盆地石炭系哈尔加乌组上、下段烃源岩特征及差异[J]. 天然气地球科学, 2018, 29(1): 73-86.
[9] 陈晓艳,田福清,邹华耀,郭柳汐,芦晓伟,殷杰,王道军. 湖相烃源岩热演化生烃研究——基于冀中坳陷烃源岩加水热模拟实验[J]. 天然气地球科学, 2018, 29(1): 103-113.
[10] 谢增业, 李志生, 国建英, 张璐, 董才源. 烃源岩和储层中沥青形成演化实验模拟及其意义[J]. 天然气地球科学, 2016, 27(8): 1489-1499.
[11] 张明峰,熊德明,吴陈君,马万云,孙丽娜,妥进才. 准噶尔盆地东部地区侏罗系烃源岩及其低熟气形成条件[J]. 天然气地球科学, 2016, 27(2): 261-267.
[12] 陶士振, 李昌伟, 黄纯虎, 曾溅辉, 张响响, 杨春, 高晓辉, 公言杰. 煤系致密砂岩气运聚动力与二维可视化物理模拟研究——以川中地区三叠系须家河组致密砂岩气为例[J]. 天然气地球科学, 2016, 27(10): 1767-1777.
[13] 吴远东, 张中宁, 孙丽娜, 贺聪, 吉利明, 苏龙, 夏燕青. 半开放体系下流体压力对烃源岩HTHP模拟产物产率及镜质体反射率的影响[J]. 天然气地球科学, 2016, 27(10): 1904-1912.
[14] 朱永进,尹太举,沈安江,刘玲利,刘忠保. 鄂尔多斯盆地上古生界浅水砂体沉积模拟实验研究[J]. 天然气地球科学, 2015, 26(5): 833-844.
[15] 陈瑞银,王汇彤,陈建平,刘玉莹. 实验方法评价松辽盆地烃源岩的生排烃效率[J]. 天然气地球科学, 2015, 26(5): 915-921.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 施立志;林铁锋;王震亮;王卓卓;姚勇;. 库车坳陷下白垩统天然气运聚系统与油气运移研究[J]. 天然气地球科学, 2006, 17(1): 78 -83 .
[2] 刘洪军;贾亚妮;李振宏;郑聪斌;. 岩溶盆地中微隆起带的存在及意义――以鄂尔多斯盆地奥陶纪岩溶古地貌为例[J]. 天然气地球科学, 2006, 17(4): 490 -493 .
[3] USGS,郑军卫(译). 美国地质调查局油气资源研究计划[J]. 天然气地球科学, 2002, 13(3-4): 15 .
[4] 周兴熙;. 库车油气系统油气藏相态分布及其控制因素[J]. 天然气地球科学, 2004, 15(3): 205 -213 .
[5] 刘春慧;金振奎;朱桂芳;王庆东;张建良. . 准噶尔盆地东部吉木萨尔凹陷二叠系梧桐沟组储层物性特征及控制因素[J]. 天然气地球科学, 2007, 18(3): 375 -379 .
[6] 刘文汇;黄第藩;熊传武;徐永昌;. 成烃理论的发展及国外未熟―低熟油气的分布与研究现状[J]. 天然气地球科学, 1999, 10(1-2): 1 -22 .
[7] 曹刚;李其荣;安辉;. 川南地区下二叠统茅口组“岩溶型气藏”地震、地质特征探讨[J]. 天然气地球科学, 1999, 10(3-4): 76 -81 .
[8] 胡雄;李延钧;陈新领;江波;马立协;付晓文;王强;梁艳;. 柴北缘马海地区油气全烃地球化学特征与成因[J]. 天然气地球科学, 2005, 16(5): 612 -616 .
[9] 吴时国;袁圣强;. 世界深水油气勘探进展与我国南海深水油气前景[J]. 天然气地球科学, 2005, 16(6): 693 -699 .
[10] 张雷, 刘招君, 杜江峰, 杨婷, 侯伟. 沾河断陷下白垩统淘淇河组层序地层格架及有利生储盖组合[J]. 天然气地球科学, 2010, 21(1): 100 -106 .