天然气地球科学

• 天然气开发 • 上一篇    下一篇

基于双尺度等效渗流模型的复杂碳酸盐岩蚓孔扩展形态研究

李勇明,廖毅,赵金洲,王琰琛,彭瑀   

  1. 西南石油大学油气藏地质及开发工程国家重点实验室,四川 成都 610500
  • 收稿日期:2015-08-03 修回日期:2015-10-11 出版日期:2016-01-10 发布日期:2016-01-10
  • 作者简介:李勇明(1974-),男,四川营山人,教授,博士,从事油气开采与增产新技术研究. E-mail:swpifrac@163.com.
  • 基金资助:

    国家自然科学基金重大项目(编号:51490653);国家重点基础研究发展计划(“973”)项目(编号:2013CB228004)联合资助.

Wormhole dissolution pattern study in complicated carbonate rock based on two-scale continuum model and equivalent seepage theory

Li Yong-ming,Liao Yi,Zhao Jin-zhou,Wang Yan-chen,Peng Yu   

  1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University,Chengdu 610500,China
  • Received:2015-08-03 Revised:2015-10-11 Online:2016-01-10 Published:2016-01-10

摘要:

碳酸盐岩储层非均质性强,具有天然裂缝发育与孔渗分布复杂的特点,常采用酸化措施进行处理,在其间形成的酸蚀蚓孔形态必然受到储层复杂孔渗分布模式和天然裂缝的影响。因此,在双尺度连续模型的基础上结合等效渗流理论,分析了层内非均质性、层间非均质性与天然裂缝对蚓孔形态特征与注酸量的影响。结果表明:在不同的非均质程度情况下,均存在几乎相同的注酸速度可使蚓孔突破时的注酸量最小,且最小注酸量随非均质程度增加先减小后增加;高渗带的存在能显著减少蚓孔突破时的注酸量,但渗透率增高到一定程度后对注酸量减少的影响减弱;酸液流入天然裂缝后,蚓孔延伸方向由天然裂缝决定,平行于酸液流动方向的天然裂缝能够大幅度地降低酸液注入量,随着天然裂缝长度增加,注酸量呈现线性下降的趋势。该研究对碳酸盐岩储层基质酸化研究具有一定的指导意义。

关键词: 碳酸盐岩, 酸蚀蚓孔, 非均质性, 高渗带, 天然裂缝

Abstract:

Carbonate rock has great heterogeneity,and possesses the characteristics of complex physical property and natural fractures development,thus it is often treated by acidizing to create wormhole.Wormhole dissolution patterns are significantly affected by those characteristics.Hence,a dual-scale continuum model and equivalent seepage theory were used to study,the influence of in-layer heterogeneity,interlayer heterogeneity and natural fractures upon wormhole pattern and acid injection volume when break through (PVBT) were analyzed.The results show that an approximately the same optimum acid injection rate that leads minimal PVBT in different heterogeneity level do exist,and the minimal PVBT  firstly increased and then decreased with the increase of heterogeneity level.High permeability zone leads to sharp decrease of PVBT ,but the inference of permeability increase on PVBT  decrease becomes weak gradually when the permeability increases to a certain level.The extension direction of wormhole is decided by natural fractures when acid flows into it,and the PVBT decreased sharply by the fractures which are parallel to the acid flow direction.With the increase of fracture length,the acid injection volume tends to decrease linearly.The study is of great significance in guiding matrix acidizing of carbonate reservoirs.

Key words: Carbonate rock, Wormhole, Heterogeneity, High permeability zone, Natural fracture

中图分类号: 

  • TE357.2

[1]Zhao Wenzhi,Shen Anjian,Hu Suyun,et al.Geological conditions and distributional features of large-scale carbonate reservoirs onshore China[J].Petroleum Exploration and Development,2012,39(1):1-12.[赵文智,沈安江,胡素云,等.中国碳酸盐岩储集层大型化发育的地质条件与分布特征[J].石油勘探与开发,2012,39(1):1-12.]
[2]Zhao Wenzhi,Hu Suyun,Liu Wei,et al.Petroleum geological features and exploration prospect in deep marine carbonate strata onshore China:A further discussion[J].Natural Gas Industry,2014,34(4):1-9.[赵文智,胡素云,刘伟,等.再论中国陆上深层海相碳酸盐岩油气地质特征与勘探前景[J].天然气工业,2014,34(4):1-9.]
[3]Gu Zhidong,Wang Zecheng,Hu Suyun,et al.Tectonic settings of global marine carbonate giant fields and exploration significance[J].Natural Gas Geoscience,2012,23(1):106-118.[谷志东,汪泽成,胡素云,等.全球海相碳酸盐岩巨型油气田发育的构造环境及勘探启示[J].天然气地球科学,2012,23(1):106-118.]
[4]Wei Guoqi,Yang Wei,Li Jian,et al.Geological characteristics and exploration fields of subaerial natural gas in China[J].Natural Gas Geoscience,2014,25(7):957-970.[魏国齐,杨威,李剑,等.中国陆上天然气地质特征与勘探领域[J].天然气地球科学,2014,25(7):957-970.]
[5]Hu Anping,Li Xiuzhi,Jiang Yimin,et al.Development and application of micro-area geochemistry analysis technology for carbonate reservoirs[J].Natural Gas Geoscience,2014,25(1):116-123.[胡安平,李秀芝,蒋义敏,等.碳酸盐岩储层微区地球化学分析技术的发展及应用[J].天然气地球科学,2014,25(1):116-123.]
[6]Kang Zhijiang,Zhao Yanyan,Zhang Yun,et al.Numerical simulation technology and its application to fractured-vuggy carbonate reservoirs[J].Oil & Gas Geology,2014,35(6):944-949.[康志江,赵艳艳,张允,等.缝洞型碳酸盐岩油藏数值模拟技术与应用[J].石油与天然气地质,2014,35(6):944-949.]
[7]Yan Haijun,Jia Ailin,He Dongbo,et al.Developmental problems and strategies of reefshoal carbonate gas reservoir[J].Natural Gas Geoscience,2014,25(3):414-422.[闫海军,贾爱林,何东博,等.礁滩型碳酸盐岩气藏开发面临的问题及开发技术对策[J].天然气地球科学,2014,25(3):414-422.]
[8]Hoefner M L,Fogler H S.Poreevolution and channel formation during flow and reaction in porous media[J].
American Institution of Chemical Engineers Journal,1988,1(34):45-54.
[9]Fredd N C,Fogler H S.Optimumconditions for Wormhole Formation in carbonate porous media:Influence of transport and reaction[J].SPE Journal,1999,4(3):196-205.
[10]Daccord G,Lenormand R,Lietard O.Chemical dissolution of a porous medium by a reactive fluid-Ⅰ.Model for the "wormholing" phenomenon[J].Chemical Engineering Science,1993,48 (1):169-178.
[11][JP3]Daccord G,Liétard O,Lenormand R.Chemical dissolution of a 〖HJ1.9mm〗porous medium by a reactive fluid-Ⅱ.Convection vs reaction,behavior diagram[J].Chemical Engineering Science,1993,48(1):179-186.
[12]Talbot M S,Gdanski R D.Beyond the Damkohler Number:A New Interpretation of Carbonate Wormholing[R].Europec/EAGE Conference and Exhibition,9-12 June 2008,Rome,Italy.SPE 113042,2008.
[13]Hoefner M L,Fogler H S.Pore Evolution and Channel Formation During Flow and Reaction in Porous Media[J].American Institution of Chemical Engineers Journal,1988,1(34):45-54.
[14]Daccord G,Touboul E,Lenormand R.Carbonateacidizing:Toward a quantitative model of the wormholing phenomenon[J].SPE Production Engineering,1989,4(1):63-68.
[15]Hung K M,Hill A D,Sepehrnoorl K.A Mechanistic Model of Wormhole Growth in Carbonate Matrix Acidizing and Acid Fracturing[R].SPE 16886,1989.
[16]Huang T,Hill A D.Reaction Rate and Fluid Loss:The Keys to Wormhole Initiation and Propagation in Carbonate Acidizing[R].International Symposium on Oilfield Chemistry,18-21 February,Houston,Texas.SPE 37312,1997.
[17]Buijse M A.Understanding Wormholing Mechanisms Can Improve Acid Treatments in Carbonate Formations[R].SPE European Formation Damage Conference,2-3 June,The Hague,Netherlands.SPE 38166,1997.
[18]Panga M K R,Ziauddin M,Balakotaiah V.Two-scale continuum model for simulation of wormholes in carbonate acidization[J].AIChE Journal,2005,51(12):3231-3248.
[19]Kalia N,Balakotaiah V.Modeling and analysis of wormhole formation in reactive dissolution of carbonate rocks[J].Chemical Engineering Science,2007,62(4):919-928.
[20]Kalia N,Balakotaiah V.Effect of medium heterogeneities on reactive dissolution of carbonates[J].Chemical Engineering Science,2009,64(2):376-390.
[21]Maheshwari P,Ratnakar R R,Kalia N,et al.3-D simulation and analysis of reactive dissolution and wormhole formation in carbonate rocks[J].Chemical Engineering Science,2013,90:258-274.
[22]Liu M,Zhang S,Mou J.Fractal nature of acid-etched wormholes and the influence of acid type on wormholes[J].Petroleum Exploration and Development,2012,39(5):630-635.
[23]Liu M,Zhang S,Mou J.Effect of normally distributed porosities on dissolution pattern in carbonate acidizing[J].Journal of Petroleum Science and Engineering,2012,(94/95):28-39.
[24]Mou J,Cai X,Liu M.The Mechanism of Leakoff Reduction of Clean Self-Diversion Acid in Acid Fracturing[C].2013 International Petroleum Technology Conference,2013.
[25]Civan F.Scale effect on porosity and permeability:Kinetics,model,and correlation[J].American Institution of Chemical Engineers Journal,2001,47(2):271-287.
[26]Liu Ming,Zhang Shicheng,Mou Jianye.Dissolution pattern of radial wormhole in carbonate acidizing[J].Petroleum Geology and Recovery Efficiency,2012,19(2):106-110.[柳明,张士诚,牟建业.碳酸盐岩酸化径向蚓孔扩展形态研究[J].油气地质与采收率,2012,19(2):106-110.]

[1] 王清龙,林畅松,李浩,韩剑发,孙彦达,何海全. 塔里木盆地西北缘中下奥陶统碳酸盐岩沉积微相特征及演化[J]. 天然气地球科学, 2018, 29(9): 1274-1288.
[2] 李滔,李闽,张烈辉,田山川,赵潇雨,郑玲丽. 微多孔介质迂曲度与孔隙结构关系[J]. 天然气地球科学, 2018, 29(8): 1181-1189.
[3] 吕正祥,王先东,吴家洋,卿元华. 渤海海域中部古近系湖相碳酸盐岩储层成岩演化特征[J]. 天然气地球科学, 2018, 29(7): 921-931.
[4] 王珊,曹颖辉,杜德道,王石,李洪辉,董洪奎,严威,白莹. 塔里木盆地柯坪—巴楚地区肖尔布拉克组储层特征与主控因素[J]. 天然气地球科学, 2018, 29(6): 784-795.
[5] 汪道兵,葛洪魁,宇波,文东升,周珺,韩东旭,刘露. 页岩弹性模量非均质性对地应力及其损伤的影响[J]. 天然气地球科学, 2018, 29(5): 632-643.
[6] 史文洋,姚约东,程时清,石志良,高敏. 裂缝性低渗透碳酸盐岩储层酸压改造油井动态压力特征[J]. 天然气地球科学, 2018, 29(4): 586-596.
[7] 张永庶,伍坤宇,姜营海,王鹏,蔡智洪,高发润,谭武林,高树芳,鲜本忠. 柴达木盆地英西深层碳酸盐岩油气藏地质特征[J]. 天然气地球科学, 2018, 29(3): 358-369.
[8] 孟凡坤,雷群,徐伟,何东博,闫海军,邓惠. 应力敏感碳酸盐岩复合气藏生产动态特征分析[J]. 天然气地球科学, 2018, 29(3): 429-436.
[9] 魏新善,魏柳斌,任军峰,蔡郑红,周黎霞. 鄂尔多斯盆地下古生界风化壳气藏差异性[J]. 天然气地球科学, 2018, 29(2): 178-188.
[10] 贾锁刚, 梁宏波, 万有余, 胥云, 翁定为, 刘世铎. 柴达木盆地英西地区缝洞型碳酸盐岩储层体积改造技术研究与应用[J]. 天然气地球科学, 2018, 29(11): 1619-1626.
[11] 田瀚, 唐松, 张建勇, 辛勇光, 王鑫, 李文正. 川西地区中三叠统雷口坡组储层特征及其形成条件[J]. 天然气地球科学, 2018, 29(11): 1585-1594.
[12] 张洲, 鲜保安, 连小华, 王青川, 周敏. 低渗煤储层背景下高渗带主控地质因素及模式[J]. 天然气地球科学, 2018, 29(11): 1656-1663.
[13] 胡安平,沈安江,潘立银,王永生,李娴静,韦东晓. 二元同位素在碳酸盐岩储层研究中的作用[J]. 天然气地球科学, 2018, 29(1): 17-27.
[14] 王媛,林畅松,李浩,孙彦达,何海全,王清龙,姬牧野,张曼莉. 高频层序地层格架中碳酸盐岩成岩作用研究——以哈萨克斯坦Marsel探区下石炭统谢尔普霍夫阶为例[J]. 天然气地球科学, 2018, 29(1): 28-41.
[15] 张宫,冯庆付,武宏亮,王克文,冯周. 基于核磁T2谱对数均值差异的碳酸盐岩气水识别[J]. 天然气地球科学, 2017, 28(8): 1243-1249.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!