天然气地球科学

• 非常规天然气 • 上一篇    下一篇

考虑基质收缩效应的页岩气双孔双渗模型

曹成,李天太,张磊,高潮,王晖   

  1. 1.中国石油大学(北京) 石油工程学院,北京 102249;
    2.陕西延长石油(集团)有限责任公司研究院,陕西 西安 710075;
    3.西安石油大学石油工程学院,陕西 西安710065
  • 收稿日期:2015-03-24 修回日期:2015-06-21 出版日期:2015-12-10 发布日期:2015-12-10
  • 作者简介:曹成(1984-),男,陕西延安人,博士研究生,主要从事页岩气藏地质建模与数值模拟研究. E-mail:caochengyanlian@163.com.
  • 基金资助:

    国家高技术研究发展计划(“863”计划)“页岩气钻完井及储存评价与产能预测技术研究”(编号:2013AA064501);陕西省科技统筹创新工程计划“陆相页岩气资源地质研究与勘探开发关键技术攻关”(编号:2012KTZB03-01-01)联合资助.

Shale Gas Dual Porosity-dual Permeability Model with Matrix Shrinking

CAO Cheng,LI Tian-tai,ZHANG Lei,GAO Chao,WANG Hui   

  1. 1.School of Petroleum Engineering,China University of Petroleum,Beijing 102249,China;
    2.Research Institute of Shanxi Yanchang Petroleum (Group) Co.Ltd.,Xi′an 710075,China;
    3.College of Petroleum Engineering,Xi′an Shiyou University,Xi′an 710065,China
  • Received:2015-03-24 Revised:2015-06-21 Online:2015-12-10 Published:2015-12-10

摘要:

为了研究吸附性页岩储层基质收缩效应对气体渗流特征的影响,引入吉布斯表面自由能函数,建立考虑基质收缩效应、应力敏感效应、滑脱效应和自由分子流动效应的双孔双渗介质数学模型;采用隐式裂缝压力—显式基质压力离散方法对模型求解。并针对鄂尔多斯盆地古生界山西组页岩讨论基质收缩效应、应力敏感效应、滑脱效应和自由分子流动效应对气体流动机制及产量的影响。结果表明:①基质绝对渗透率的反弹点和兰缪尔体积、页岩密度、温度、杨氏模量、压缩系数有关,与兰缪尔压力无关;②基质收缩效应减少黏性流量占总流通量比例,增加滑脱流量和自由分子流量占总流通量比例;③基质收缩效应和应力敏感效应在基质孔径较大时对产量影响比较显著,当孔径小于2nm时,可以忽略基质收缩效应和应力敏感效应的影响;④滑脱效应和自由分子流动效应在低压小孔时对产量的贡献量变大,当孔径大于50nm时,滑脱效应和自由分子流动效应对产量基本没有贡献。

关键词: 基质收缩, 吉布斯表面自由能函数, 应力敏感, 滑脱, 自由分子流动, 双孔双渗

Abstract:

In order to investigate the effect of matrix shrinkage on the behavior of gas seepage,Gibbs surface free energy function was introduced to establish a dual porosity-dual permeability model considering matrix shrinkage,effective stress,slippage and free molecular flow effect.Implicit fracture pressure and explicit matrix pressure method was applied to discretize governing equations.We discuss the effect of matrix shrinkage,effective stress,slippage and free molecular flow on gas flow mechanism and production rate in the Upper Paleozoic Shanxi Formation in the Ordos Basin.The results showed that,the rebound of absolute permeability has relationship with Langmuir volume,shale density,temperature,Young modulus,rock compressibility,instead of Langmuir pressure.Matrix shrinkage reduces the ration of viscous flow to total flow rate and decreases the ration of slip flow and free molecular flow to total flow rate.Matrix shrinkage and stress sensitivity have a considerable influence on production rate in large diameter and the influence can be ignored when pore diameter is smaller than 2nm.Slippage and free molecular flow contribute largely to production rate in low pressure and small pore.There is no contribution to production rate when pore diameter is bigger than 50nm.

Key words: Matrix shrinkage, Gibbs surface free energy function, Effective stress, Slippage, Free molecule flow, Dual porosity-dual permeability model

中图分类号: 

  • TE132
[1]Xu Jianyong,Wu Aijun.The development status of shale gas in the world and its exploration prospect in China[J].Special Oil  and Gas Reservoirs,2010,17(5):2-7.[徐建永,武爱俊.页岩气发展现状及勘探前景[J].特种油气藏,2010,17(5):2-7.]
[2]Yao Jun,Sun Hai,Fan Dongyan,et al.Transport mechanisms and numerical simulation of shale gas reservoirs[J].Journal of China University of Petmleum:Natural Science Edition,2013,37(1):91-98.[姚军,孙海,樊冬艳,等.页岩气藏运移机制及数值模拟[J].中国石油大学学报:自然科学版,2013,37(1):91-98.]
[3]Zhang Jinchuan,Jin Zhijun,Yuan Mingsheng,et al.Reservoiring mechanism of shale gas and its distribution[J].Natural Gas Industry,2004,24(7):15-18.[张金川,金之钧,袁明生,等.页岩气成藏机理和分布[J].天然气工业,2004,24(7):15-18.]
[4]Javadpour F.Nanopore and apparent permeability of gas flow in mud rocks (shale and siltstone)[J].Journal of Canadian Petroleum Technology,
2009,48(8):16-21.
[5]Wu Jian,Chang Yuwen,Liang Tao,et al.Shale  gas  flow  model in  matrix  nanoscale  pore[J].Natural Gas Geoscience,2015,26(3):575-579.[吴剑,常毓文,梁涛,等.页岩气在基质纳米孔隙中的渗流模型[J].天然气地球科学,2015,26(3):575-579.]
[6]Du Dianfa,Wang Yanyan,Zhang Qiong,et al.A Comprehensive  seepage  model of  shale gas  reservoir and  pressure behavior analysis[J].Natural Gas Geoscience,2014,25(4):612-617.[杜殿发,王妍妍,张琼,等.页岩气藏综合渗流模型及压力动态分析[J].天然气地球科学,2014,25(4):612-617.]
[7]Palmer L,Mansoori J.How Permeability Depends on Stress [HJ1.6mm]and Pore Pressure in Coalbeds:A New Model[C].SPE139701,2012.
[8]Shi Juntai,Zhang Lei,Li Yuansheng,et al.Diffusion and Flow Mechanisms of Shale Gas through Matrix Pores and Gas Production Forecasting[C] .SPE167226,2013.
[9]Zhang Rui,Ning Zhengfu,Yang Feng,et al.Experimental  study on microscopic pore structure controls on shale permeability under compaction process[J].Natural Gas Geoscience,2014,25(8):1284-1289.[张睿,宁正福,杨峰,等.微观孔隙结构对页岩应力敏感影响的实验研究[J].天然气地球科学,2014,25(8):1284-1289.]
[10]Yao Yuping,Zhou Shining.The mechanical property of coal containing gas[J].Journal of China University of Mining and Technology,1988,17(1):1-7.[姚宇平,周世宁.含瓦斯煤的力学性质.[J].中国矿业大学学报,1988,17(1):1-7.]
[11]Tan Muhua,Huang Yunyuan.Physical Chemistry Surface[M].Beijing:China Architecture & Building Press,1985:50-54.[谈慕华,黄蕴元.表面物理化学[M].北京:中国建筑工业出版社,1985:50-54.]
[12]Li Zhiping,Li Zhifeng.Dynamic characteristics of shale gas flow in nanoscale pores[J].Natural Gas Industry,2012,32(4):50-53.[李治平,李智峰.页岩气纳米级孔隙渗流动态特征[J].天然气工业,2012,32(4):50-53.]
[13]Warren J E,Root P J.The behavior of naturally fractured reservoirs[J].SPE Journal,1963,3(3):245-255.
[14]Kazemi H,Merill L S,Porterfield K L,et al.Numerical simulation of water-oil flow in naturally fractured reservoirs[C] .SPE5719,1976.
[15]Peaceman D W.Interpretation of well-block pressures in numerical reservoir simulation with nonsquare grid blocks and anisotropic permeability[J].SPE Journal,1983,23(3):531-543.
[1] 程鸣,傅雪海,张苗,程维平,渠丽珍. 沁水盆地古县区块煤系“三气”储层覆压孔渗实验对比研究[J]. 天然气地球科学, 2018, 29(8): 1163-1171.
[2] 董洪奎,李洪辉,杜德道,陈永权,严威,王珊. 塔里木盆地巴楚隆起吐木休克断裂带构造特征及形成演化[J]. 天然气地球科学, 2018, 29(7): 951-960.
[3] 史文洋,姚约东,程时清,石志良,高敏. 裂缝性低渗透碳酸盐岩储层酸压改造油井动态压力特征[J]. 天然气地球科学, 2018, 29(4): 586-596.
[4] 孟凡坤,雷群,徐伟,何东博,闫海军,邓惠. 应力敏感碳酸盐岩复合气藏生产动态特征分析[J]. 天然气地球科学, 2018, 29(3): 429-436.
[5] 杨浩珑,向祖平,袁迎中,李龙. 低渗气藏压裂气井稳态产能计算新方法[J]. 天然气地球科学, 2018, 29(1): 151-157.
[6] 端祥刚,安为国,胡志明,高树生,叶礼友,常进. 四川盆地志留系龙马溪组页岩裂缝应力敏感实验[J]. 天然气地球科学, 2017, 28(9): 1416-1424.
[7] 吴闯,尹宏伟,于常青,皮金云,吴珍云,汪伟,张佳星. 青海省木里地区天然气水合物构造成藏机制——来自物理模拟实验的启示[J]. 天然气地球科学, 2017, 28(5): 771-784.
[8] 田冷,李鸿范,马继翔,谢全,顾岱鸿,任效星. 基于启动压力梯度与应力敏感的致密气藏多层多级渗流模型[J]. 天然气地球科学, 2017, 28(12): 1898-1907.
[9] 焦伟伟,汪生秀,程礼军,罗情勇,方光建. 渝东南地区下寒武统页岩气高氮低烃成因[J]. 天然气地球科学, 2017, 28(12): 1882-1890.
[10] 王玉满,李新景,董大忠,张晨晨,王淑芳,黄金亮,管全中. 海相页岩裂缝孔隙发育机制及地质意义[J]. 天然气地球科学, 2016, 27(9): 1602-1610.
[11] 朱维耀,马东旭,朱华银,安来志,李兵兵. 页岩储层应力敏感性及其对产能影响[J]. 天然气地球科学, 2016, 27(5): 892-897.
[12] 张睿,宁正福,张海山,谢佥. 裂缝性致密储层应力敏感机理新认识[J]. 天然气地球科学, 2016, 27(5): 918-923.
[13] 李德江,易士威,冉启贵,缪卫东,宋海敬,白晶玉. 塔里木盆地库车坳陷东秋里塔格构造样式及勘探前景[J]. 天然气地球科学, 2016, 27(4): 584-590.
[14] 韩耀祖,谷永兴,刘军,商国玺,王本强,吕瑞. 塔里木盆地克拉苏构造带西段构造成因及油气远景展望——以阿瓦特地区为例[J]. 天然气地球科学, 2016, 27(12): 2160-2168.
[15] 焦伟伟,岳锋,程礼军,马勇,刘光明. 渝东南地区下寒武统牛蹄塘组页岩孔隙体系特征[J]. 天然气地球科学, 2015, 26(8): 1587-1595.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!