天然气地球科学

• 天然气地球化学 • 上一篇    下一篇

甲烷渗漏环境中硫酸盐还原对水化学组分的影响

魏铭聪,许天福,刘肖,金光荣,曹玉清,刘娜   

  1. 吉林大学地下水资源与环境教育部重点实验室, 吉林 长春 130021
  • 收稿日期:2015-05-02 修回日期:2015-06-17 出版日期:2015-12-10 发布日期:2015-12-10
  • 通讯作者: 许天福(1962-),男,辽宁丹东人,教授,主要从事多相流体运动和多组分反应溶质运移机理与模拟、海底自生矿物形成、地球化学反应模拟等研究. E-mail:Tianfu.good@gmail.com.
  • 作者简介:魏铭聪(1991-),男,江西赣州人,硕士研究生,主要从事地下多组分反应溶质运移、地球化学和天然气水合物相关自生矿物形成研究. E-mail:992839673@qq.com.
  • 基金资助:

    中国博士后科学基金(编号:2012M520673);国家海洋地质专项工作项目(编号:GZH201100306);吉林大学研究生创新基金资助项目(编号:2014104)联合资助.

The Sulfate Reduction Effect on Water Chemical Compositionsin Methane Seeping Environment

WEI Ming-cong,XU Tian-fu,LIU Xiao,JIN Guang-rong,CAO Yu-qing,LIU Na   

  1. Key Lab of Groundwater Resources and Environment of Ministry of Education,Jilin University,Changchun 130021,China
  • Received:2015-05-02 Revised:2015-06-17 Online:2015-12-10 Published:2015-12-10

摘要:

硫酸盐还原作用是由硫酸盐还原菌(SRB)主导的,它广泛分布于海底甲烷渗漏沉积区。当它与甲烷氧化耦联时,对海底甲烷渗漏起着控制作用。研究硫酸盐还原作用对于探讨海底甲烷的迁移和转化具有重要意义。以反应釜为载体,将SRB接种于低温高压的甲烷环境中,探讨系统内微生物地球化学作用对水化学组分和环境的影响规律。结果显示:系统内氧化还原电位由-107.5mV降低至-181.5mV;HCO3-和HS-浓度均升高,前者浓度比后者大2个数量级。Fe2+浓度有所上升,Ca2+度则由2.40mg/L降低至0.04mg/L。扫描电镜下观测到有较多的碳酸盐和硫化物沉淀,能谱分析发现其主要阳离子为Fe、Ca、Mg和Mn。可以确定,硫酸盐还原作用及相应的地球化学反应控制着系统内离子组分的变化。实验结果对认识海底发生的微生物地球化学作用和海洋碳硫循环有重要意义。

关键词: 硫酸盐还原菌, 硫酸盐还原作用, 甲烷环境, 水化学环境

Abstract:

Sulfate reduction is induced by the sulfate-reducing bacteria (SRB),and it is widely distributed in methane seeps in marine environment.Sulfate reduction plays an important role in controlling the methane seeps whilst it couples to anaerobic oxidation of methane.Therefore,it is of great significance to research the sulfate reduction to discuss methane transfer and transformation in submarine sediment.To study the impact of biogeochemical reactions on the hydrochemical compositions and environment,high-pressure reactor kettle acts as an SRB carrier,and it has inoculated SRB with the methane environment under low-temperature and high-pressure.The results revealed that the Oxidation Reduction Potential value has decreased from -107.5mV to -181.5mV in the reactor.Both the concentrations of HCO3- and HS- have decreased with time growth,and the former concentration was 2 orders of magnitude larger than the latter.The concentration of Fe2+ increased to some extent,but Ca2+ reduced from 2.40mg/L to 0.04 mg/L.There were many carbonate and sulfide minerals detected by the SEM,and the components of precipitations were Fe,Ca,Mg and Mn analyzed by EDS.It can be concluded that sulfate reduction and the corresponding geochemical reaction control the changes of ion components in this system.The experiment results have certain significance for understanding the biogeochemical reactions and carbon-sulfur cycle in submarine sediment.

Key words: Sulfate-reducing bacteria, Sulfate reduction, Methane environment, Hydrochemical conditions

中图分类号: 

  • P593

[1]Berner R A.A new geochemical classification of sedimentary environments[J].Journal of Sedimentary Research,1981,51(2):359-365.
[2]Reeburgh W S.Methane consumption in Cariaco Trench waters and sediments[J].Earth and Planetary Science Letters,1976,28(3):337-344.
[3]Hoehler T M,Alperin M J,Albert D B,et al.Field and laboratory studies of methane oxidation in an anoxic marine sediment:Evidence for a methanogen-sulfate reducer consortium[J].Global Biogeochemical Cycles,1994,8(4):451-463.
[4]Valentine D L,Reeburgh W S.New perspectives on anaerobic methane oxidation[J].Environmental Microbiology,2000,2(5):477-484.
[5]Boetius A,Ravenschlag K,Schubert C J,et al.A marine microbial consortium apparently mediating anaerobic oxidation of methane[J].Nature,2000,407(6804):623-626.
[6]Schink B.Energetics of syntrophic cooperation in methanogenic degradation[J].Microbiology and Molecular Biology Reviews,1997,61(2):262-280.
[7]Rodriguez N M,Paull C K,Borowski W S.Zonation of authigenic carbonates within gas hydrate-bearing sedimentary sections on the Blake ridge:Offshore southeasten north america1[C]//Proceedings of the Ocean Drilling Program.Scientific Results.Ocean Drilling Program,2000,164:301-312.
[8]Luan Xiwu.Sulfate-methane interface:The upper boundary of gas hydrate zone[J].Marine Geology & Quaternary Geology,2009,29(2):91-102.[栾锡武.天然气水合物的上界面—硫酸盐还原-甲烷厌氧氧化界面[J].海洋地质与第四纪地质,2009,29(2):91-102.]
[9]Reeburgh W S.Oceanic methane biogeochemistry[J].Chemical Reviews,2007,107(2):486-513.
[10]Froelich P N,Klinkhammer G P,Bender M L,et al.Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic:Suboxic diagenesis[J].Geochimica et Cosmochimica Acta,1979,43(7):1075-1090.
[11]Liu Xiaoping,Yang Xiaolan.Progress of geochemical prospecting methods of marine gas hydrate[J].Natural Gas Geoscience,2007,18(2):312-316.[刘小平,杨晓兰.海底天然气水合物地球化学方法勘探进展[J].天然气地球科学,2007,18(2):312-316.]
[12]Shen Lidong,Hu Baolan,Zheng Ping.Progress in study on microorganisms responsible for anaerobic oxidation of methane[J].Acta Pedologica Sinica,2011,48(3):619-628.[沈李东,胡宝兰,郑平.甲烷厌氧氧化微生物的研究进展[J].土壤学报,2011,48(3):619-628.]
[13]Orphan V J,House C H,Hinrichs K U,et al.Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis[J].Science,2001,293(5529):484-487.
[14]Orphan V J,House C H,Hinrichs K U,et al.Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments[J].Proceedings of the National Academy of Sciences,2002,99(11):7663-7668.
[15]Knittel K,Boetius A.Anaerobic oxidation of methane:Progress with an unknown process[J].Annual Review of Microbiology,2009,63:311-334.
[16]Zhang Y,Henriet J P,Bursens J,et al.Stimulation of in vitro anaerobic oxidation of methane rate in a continuous high-pressure bioreactor[J].Bioresource Technology,2010,101(9):3132-3138.
[17]Xi Jingru,Liu Suqin,Li Lin,et al.Acclimatization and characteristics of microbial community in sulphate-dependent anaerobic methane oxidation[J].Environment Science,2014,35(12):28.[席婧茹,刘素琴,李琳,等.硫酸盐还原型甲烷厌氧氧化菌群驯化及其群落特征[J].环境科学,2014,35(12):28.]
[18]Postgate J R.The Sulphate-Reducing Bacteria[M].Cambridge:CUP Archive,1979.
[19]Lu Hongfeng,Sun Xiaoming,Zhang Mei.Nature Gas Hydrate Sediment Mineralogy and Geochemistry in the South China Sea[M].Beijing:Science Press,2011.[陆红峰,孙晓明,张美.南海天然气水合物沉积物矿物学和地球化学[M].北京:科学出版社,2011.]
[20]Liu B,Yuan Q,Su K H,et al.Experimental simulation of the exploitation of natural gas hydrate[J].Energies,2012,5(2):466-493.
[21]Sloan Jr E D,Koh C.Clathrate Hydrates of Natural Gases[M].Florida:CRC Press,2007.
[22]Ma Fang,Ren Nanqi,Yang Jixian,et al.The Experiment of Pollution Controll Microbiology[M].Haerbin:Harbin Institute of Technology Press,2002.[马放,任南琪,杨基先,等.污染控制微生物学实验[M].哈尔滨:哈尔滨工业大学出版社,2002.]
[23]Widdel F,Bak F.Gram-negative mesophilic sulfate-reducing bacteria[M].The prokaryotes.Springer New York,1992:3352-3378.
[24]Zhang Xiaoli,Liu Haihong,Chen Kaixun,et al.The study of growing regulation of sulfate-reducing bacteria[J].Journal of Northwest University:Natural Science Edition,1999,29(5):397-402.[张小里,刘海洪,陈开勋,等.硫酸盐还原菌生长规律的研究[J].西北大学学报:自然科学版,1999,29(5):397-402.]
[25]Jiao Di,Li Jin,Li Juan,et al.Isolation and growth characteristics of sulfate-reducing bacteria stains in reclaimed Water[J].Environmental Science & Technology,2010,33(10):64-67.[焦迪,李进,李娟,等.硫酸盐还原菌在中水中的分离及生长特性研究[J].环境科学与技术,2010,33(10):64-67.]
[26]Gui Guan.Experimental Study on Desulfotomaculum Cultivation and Sulfate Reduction[D].Wuhan:Wuhan University of Technology,2013.[桂冠.脱硫肠状菌的培养及还原硫酸盐的试验研究[D].武汉:武汉理工大学,2013.]
[27]Qiu R L,Zhao B L,Liu J L,et al.Sulfate reduction and copper precipitation by a Citrobacter sp.isolated from a mining area[J].Journal of Hazard  Materials,2008,39(9):6-11.
[28]Hunter K S,Wang Y,Van Cappellen P.Kinetic modeling of microbially-driven redox chemistry of subsurface environments:Coupling transport,microbial metabolism and geochemistry[J].Journal of Hydrology,1998,209(1):53-80.
[29]Yao Yunbin.Physics and Chemistry Manuals[M].Shanghai:Shanghai Science and Technology Press,1985.[姚允斌.物理学和化学手册[M].上海:上海科学技术出版社,1985.]
[30]Von Wolzogen Kukr C A.Van Vlugt L S.De Grafiteering van gietijzerals[J].Electrobiochimich Process Manscrobe Gronden Water,Corrosion,1984,18(6):147-165.
[31]Cao J,Zhang G,Mao Z S,et al.Influence of electron donors on the growth and activity of sulfate-reducing bacteria[J].International Journal of Mineral Processing,2012,2(106):58-64.
[32]Peck H D,Van Beeumen J,LeGall J.Biochemistry of dissimilatory sulphate reduction[and discussion][J].Philosophical Transactions of the Royal Society of London.B,Biological Sciences,1982,298(1093):443-466.
[33]Odom J M,Singleton R.TheSulfate-Reducing Bacteria:Contemporary Perspectives[M].New York:Springer-Verlag,1993.
[34]Zhu Erqin,Wang Qi.Marine Authigenic Mineral[M].Beijing:China Ocean Press,1988.[朱而勤,王琦.海洋自生矿物[M].北京:海洋出版社,1988.]
[35]Chapelle,F H.Ground-Water Microbiology and Geochemistry[M].New York:Wiley,993.

[1] 李延钧, 刘麟, 刘臣, 李其, 袁续祖, 杨坚. 四川盆地南部纳溪—塘河地区下三叠统嘉陵江组含硫气藏成因[J]. 天然气地球科学, 2007, 18(5): 732-736.
[2] 向廷生,万家云,蔡春芳 . 硫酸盐还原菌对原油的降解作用和硫化氢的生成[J]. 天然气地球科学, 2004, 15(2): 171-173.
[3] 吴勇; 覃建雄; 于静. 川中磨溪气田雷一~1储层古岩溶发育特征[J]. 天然气地球科学, 1996, 7(2): 15-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!