天然气地球科学

• 天然气地质学 • 上一篇    下一篇

气水过渡带和天然气成藏圈闭闭合度下限问题讨论——以莺歌海盆地高温高压带气藏为例

吴红烛,黄志龙,童传新,黄保家,刘平,魏国   

  1. 1.中国石油大学油气资源与探测国家重点实验室,北京 102249;
    2.浙江省地球物理地球化学勘查院,浙江 杭州 310005;
    3.中海石油(中国)有限公司湛江分公司,广东 湛江 524057
  • 收稿日期:2015-02-16 修回日期:2015-04-12 出版日期:2015-12-10 发布日期:2015-12-10
  • 通讯作者: 黄志龙(1962-),男,浙江诸暨人,教授,博士生导师,主要从事油气藏形成与分布,非常规油气地质研究. E-mail:huang5288@163.com.
  • 作者简介:吴红烛(1985-),男,湖北鄂州人,博士,主要从事油气藏形成与分布研究. E-mail:wuhongzhu_001@163.com.
  • 基金资助:

    国家科技重大专项项目(编号:2011ZX05023-004-008)资助.

Discussion on Gas-water Transition Zone and Accumulation Closure Limit:A Case of Gas Reservoir in High Temperature and High Pressure Belts of Yinggehai Basin

WU Hong-zhu,HUANG Zhi-long,TONG Chuan-xin,HUANG Bao-jia,LIU Ping,WEI Guo   

  1. 1.State Key Laboratory of Petroleum Resource and Prospecting,China University of Petroleum,Beijing 102249,China;
    2.Zhejiang Geophysical and Geochemical Exploration Institute,Hangzhou 310005,China;
    3.Zhanjiang Branch of CNOOC Limited,Zhanjiang 524057,China
  • Received:2015-02-16 Revised:2015-04-12 Online:2015-12-10 Published:2015-12-10

摘要:

储层的物性和孔隙结构不仅控制气藏的含气饱和度,也控制气水过渡带的厚度。但它们之间有无定量关系呢?是否可以进行有效的预测?这对于评价圈闭的有效性和天然气勘探部署具有重要的现实意义。本文通过储层样品半渗透隔板实验、储层物性和隔层等方面的研究,结合莺歌海盆地实际地质资料的分析,提出了气水过渡带厚度的预测方法和成藏圈闭闭合度下限的概念。研究表明,气藏气水过渡带与孔隙度,特别是渗透率具有良好关系,说明储层孔隙结构是控制气藏气水过渡带厚度的主要因素,储层的隔层也会影响气水过渡带的分布。莺歌海盆地中深层天然气成藏的圈闭闭合度下限为7m,经济成藏闭合度下限为12m。

关键词: 莺歌海盆地, 高温高压带, 储层非均质性, 气水过渡带, 成藏闭合度下限

Abstract:

The reservoir physical property and pore structures not only control the gas saturation of a gas reservoir,but also influence the scale of the gas-water transition zone.However,whether there is a quantitative relationship between them and whether we can predict it effectively are unknown.But it is of significance to the trap evaluation and gas exploration.In this paper,based on the research of semipermeable partition experiment,reservoir physical properties and interlayers,combined with the analysis of the actual geological data in Yinggehai Basin,the method to predict the thickness of the gas-water transition zone and the concept of the accumulation closure limit are proposed.The research results show that there are good correlations between the thickness of gas-water transition zone and reservoir physical properties (especially permeability).It suggests that the reservoir pore structure is the main factor to control the thickness of gas-water transition zone,and the interlayers also affect the distribution of gas-water transition zones.Furthermore,the trap closure limit is 7m,and economic accumulation closure limit is 12m in mid-deep strata of Yinggehai Basin.

Key words: Yinggehai Basin, High temperature and high pressure, Reservoir heterogeneity, Gas-water transition zone, Accumulation closure limit

中图分类号: 

  • TE122.1

[1]Zhang Houfu,Fang Chaoliang,Gao Xianzhi,et al.Petroleum Geology[M].Beijing:Petroluem Industry Press,2002.[张厚福,方朝亮,高先志,等.石油地质学[M].北京:石油工业出版社,2002.]
[2]Zhang Zhuang,Shi Hongliang,Yang Keming,et al.Application of interlayer controlling gas accumulation in tight sandstone gas reservoir:A case of Xujiahe Formation gas reservoir in Dayi,west Sichuan Basin[J].Natural Gas Geoscience,2012,23(3):493-500.[张庄,史洪亮,杨克明,等.试论致密砂岩气藏中的夹层控气作用——以川西大邑须家河组气藏为例[J].天然气地球科学,2012,23(3):493-500.]
[3]Wei Yunsheng,Shao Hui,Jia Ailin,et al.Gas water distribution model and control factors in low permeability high water saturation sandstone gas reservoirs[J].Natural Gas Geoscience,2009,20(5):822-826.[位云生,邵辉,贾爱林,等.低渗透高含水饱和度砂岩气藏气水分布模式及主控因素研究[J].天然气地球科学,2009,20(5):822-826.]
[4][KG*6/7]Wang Guoting,He Dongbo,Cheng Lihua,et al.Gas-water distribution characteristics of tight sand reservoirs in Badaowan Formation in baka Gasfield,Tuha Basin[J].Geoscience,2012,26(2):370-376.[王国亭,何东博,程立华,等.吐哈盆地巴喀气田八道湾组致密砂岩气藏分布特征[J].现代地质,2012,26(2):370-376.]
[5]Hua Yongchuan.Prediction method of gas-water interface for oolitic beach reservoir of Feixianguan group in northeast Sichuan[J].Natural Gas Industry,2004,24(8):76-77.[华永川.川东北飞仙关组鲕滩气藏气水界面预测方法[J].天然气工业,2004,24(8):76-77.]
[6]Sun Laixi,Wu Jiantang,Zhu Shaopeng.Reasons of producing water in the low-permeability gas-water reservoirs without edge-bottom water[J].Natural Gas Industry,2008,28(1):113-115.[孙来喜,武楗棠,朱绍鹏.低渗透无边、底水气水同产气藏产水原因分析[J].天然气工业,2008,28(1):113-115.]
[7]Li Cheng,Sun Laixi,Yuan Jingsu,et al.A new prediction method of gas-water interface in low permeability gas reservoir[J].Drilling & Production Technology,2009,32(3):60-62.[李成,孙来喜,袁京素,等.低渗透气藏气水界面预测新方法[J].钻采工艺,2009,32(3):60-62.]
[8]Law B E.Basin-centered gas system[J].AAPG Bulletin,2002,86(11):1891-1919.
[9]Tian Leng,He Shunli,Liu Shengjun,et al.Features of gas and water distribution in rhe Xujiahe Formation gas reservoir of Guang′an area[J].Natural Gas Industry.2009,29(6):23-26.[田冷,何顺利,刘胜军,等.广安地区须家河组气藏气水分布特征[J].天然气工业,2009,29(6):23-26.]
[10]Wang Yuncheng.Oil and Gas Reservoir Evaluation[M].Beijing:Petroluem Industry Press,1999.[王允诚.油气储层评价[M].北京:石油工业出版社,1999.]
[11]Zhao Shuang,Yong Ziquan.Gas-water distribution and genesis of the tight sandstone Gasfield in member 4 of Xujiahe Formation in Chongxi of central Sichuan,China[J].Journal of Chengdu University of Technology:Science & Technology Edition,2012,39(2):164-169.[赵爽,雍自权.川中充西须四段致密砂岩气田气水分布特征及成因[J].成都理工大学学报:自然科学版,2012,39(2):164-169.]
[12]Li Shichuan,Huang Zhaoting,Jiang Tongwen,et al.The numerical simulation study of basal water condensate gas reservoir in gas-water transition zone:An example from TⅡ24 condensate gas reservoir in Kilake Gasfield[J].Natural Gas Geoscience,2014,25(11):1855-1860.[李世川,黄召庭,江同文,等.气水过渡带内底水凝析气藏数值模拟研究——以克拉克TⅡ24凝析气藏为例[J].天然气地球科学,2014,25(11):1855-1860.]
[13]Lu Xiaoyu,Huang Zhilong,Chen Jianfa,et al.Distribution features of nitrogen compounds in crude oil and reservoir connectivity[J].Journal of China University of Petroleum,2012,36(4):19-24.[逮晓喻,黄志龙,陈践发,等.原油中含氮化合物分布特征与储层连通性研究[J].中国石油大学学报(自然科学版),2012,36(4):19-24.]
[14]Guo Yanhua,Xiong Qihua,Wu Shenghe,et al.Method of non-marine reservoir flow unit[J].Journal of the University of Petroleum,China,1999,23(6):13-16.[郭燕华,熊琦华,吴胜和,等.陆相储层流动单元的研究方法[J].石油大学学报:自然科学版,1999,23(6):13-16.]
[15]Lan Lixin.The technology of reservoir geologic model and the meaning role in reservoir description[J].Journal of Northwest University:Natural Science Edition,2006,36(6):987-991.[兰立新.储层地质建模技术及其在油藏描述中的重要作用——以南堡油田为例[J].西北大学学报:自然科学版,2006,36(6):987-991.]
[16]Scheoll M.Isotope analysis of gas in gas field and gas storage operations [J].SPE Production Engineering,1993,8:337-344.
[17]Bao Ci.Natural Gas Geology[M].Beijing:Science Press,1988.[包茨.天然气地质学[M].北京:科学出版社,1988.]
[18]Tian Yiling,Xiao Yanfan,Zhu Hongxu,et al.Interfacial tensions between water and non-polar fluids at high pressures and high temperatures[J].Acta Physico-Chimica Sinica,1997,13(1):89-95.[田宜灵,肖衍繁,朱红旭,等.高温高压下水与非极性流体间的界面张力[J].物理化学学报,1997,13(1):89-95.]
[19]Zhao Guoying,Yan Wei,Chen Guangjin,et al.Measurement and calculation of high-pressure interfacial tension of methane+nitrogen/water system[J].Journal of the University of Petroleum,China:Edition of Natural Science,2002,26(1):75-82.[赵国英,阎炜,陈光进,等.甲烷+氮气/水体系高压界面张力的测定与计算[J].石油大学学报:自然科学版,2002,26(1):75-82.]
[20]Chiquet P,Daridon J L,Broseta D,et al.CO2 water interfacial tensions under pressure and temperature conditions of CO2 geological storage[J].Energy Conversion and Management,2007,48(3):736-744.
[21]Cai Biyu,Yang Jitao.Measurement and correlation of high pressure interfacial tension for n-alkane-water/brine systems[J].Petroleum and Chemical Industry,1997,26(2):105-111.[蔡碧毓,杨继涛.烃—水/盐水体系高压界面张力的测定与关联[J].石油化工,1997,26(2):105-111.]
[22]Liu Jianmin.Investigation of the Phase Equilibria and Interfacial Tension for Carbon Dioxide-water Binary Mixtures[D].Beijing:North China Electric Power University,2009.[刘建岷.二氧化碳—水体系相平衡及界面张力的研究[D].北京:华北电力大学,2009.]

[23]Fu Guang,Meng Qingfen.Difference of CO2 and CH4 sealing by caprock[J].Special Oil and Gas Reservoirs,2003,10(5):8-10.[付广,孟庆芬.盖层封闭CO2 气与CH4气的差异性分析[J].特种油气藏,2003,10(5):8-10.]

[1] 廖计华,王华,甘华军,孙鸣,王颖,蔡露露,郭帅,郭佳. 莺歌海盆地东方区中新统黄流组一段高精度层序地层特征与隐蔽油气藏预测[J]. 天然气地球科学, 2017, 28(2): 241-253.
[2] 郭潇潇,徐新德,熊小峰,侯静娴,刘海钰. 莺歌海盆地中深层天然气成藏特征与有利勘探领域[J]. 天然气地球科学, 2017, 28(12): 1864-1872.
[3] 熊小峰,徐新德,郭潇潇,梁刚,罗威. 沉积过程对莺歌海盆地烃源岩生气的控制作用[J]. 天然气地球科学, 2016, 27(12): 2169-2175.
[4] 张迎朝,徐新德,王立锋,吴杨瑜,袁冰,朱建成,何胜林,廖静. 南海北部超压低渗气藏成藏过程与成藏模式——以莺歌海盆地XF区XF13-1超压气田为例[J]. 天然气地球科学, 2015, 26(9): 1679-1688.
[5] 张伟,何家雄,李晓唐,刘志杰,张景茹,龚晓峰. 莺歌海盆地中央泥底辟带乐东区中深层成藏条件与勘探风险分析[J]. 天然气地球科学, 2015, 26(5): 880-892.
[6] 李世川,黄召庭,江同文,牛玉,阳建平,成荣红,谢伟,汪斌. 气水过渡带内底水凝析气藏数值模拟研究——以吉拉克TⅡ2凝析气藏为例[J]. 天然气地球科学, 2014, 25(11): 1855-1860.
[7] 张锐,孙作兴,王英超. 莺歌海盆地乐东区强制海退体系域及其特征[J]. 天然气地球科学, 2013, 24(6): 1159-1164.
[8] 李海,王鹏,许浩,申磊军,陈同刚,雷刚. 柴达木盆地与莺歌海盆地超压体系、油气成藏特征对比分析[J]. 天然气地球科学, 2012, 23(4): 736-741.
[9] 金博, 张金川, 刘震, 李绪深. 莺歌海盆地天然气差异输导特征及成藏意义[J]. 天然气地球科学, 2011, 22(4): 642-648.
[10] 何家雄, 祝有海, 马文宏, 龚晓峰. 南海北部边缘盆地N2分布富集特征及成因类型判识[J]. 天然气地球科学, 2011, 22(3): 440-449.
[11] 田冷, 代金友, 何顺利. 鄂尔多斯盆地古岩溶气藏储层流动单元研究[J]. 天然气地球科学, 2011, 22(2): 275-279.
[12] 杨立国, 田辉, 申家贵, 肖贤明, 黄保家. 含水饱和度对灰岩热解生成CO2气产率和碳同位素的影响[J]. 天然气地球科学, 2010, 21(1): 139-143.
[13] 位云生, 邵辉, 贾爱林, 何东博, 季丽丹, 樊茹. 低渗透高含水饱和度砂岩气藏气水分布模式及主控因素研究[J]. 天然气地球科学, 2009, 20(5): 822-826.
[14] 程杰成;雷友忠;朱维耀 . 大庆长垣外围特低渗透扶余油层CO2驱油试验研究[J]. 天然气地球科学, 2008, 19(3): 402-409.
[15] 金博,刘震,李绪深,吴川 . 莺歌海盆地地温—地压系统特征及其对天然气成藏的意义[J]. 天然气地球科学, 2008, 19(1): 49-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!