天然气地球科学

• 天然气地质学 • 上一篇    下一篇

低压气体吸附法在页岩孔径表征中的应用——以渝东南地区页岩样品为例

李腾飞,田辉,陈吉,程礼军   

  1. 1.中国科学院广州地球化学研究所,广东 广州 510640;
    2.中国科学院大学,北京 100049;
    3.重庆地质矿产研究院国土资源部页岩气资源勘查重点实验室,重庆 400042
  • 收稿日期:2014-04-12 修回日期:2015-06-02 出版日期:2015-09-10 发布日期:2015-09-10
  • 通讯作者: 田辉(1977-),男,河北保定人,副研究员,博士,主要从事油气地球化学研究. E-mail:tianhui@gig.ac.cn.
  • 作者简介:李腾飞(1989-),男,湖南常德人,博士研究生,主要从事有机地球化学、油气地质研究. E-mail:litengfei@gig.ac.cn.
  • 基金资助:

    国家重点基础研究发展计划(“973”)项目(编号:2012CB214705);中国科学院战略性先导专项(编号:XDB10040300)联合资助.

The Application of Low Pressure Gas Adsorption to the Characterization of Pore Size Distribution for Shales:An Example from Southeastern Chongqing Area

LI Teng-fei,TIAN Hui,CHEN Ji,CHENG Li-jun   

  1. 1.State Key Laboratory of Organic Geochemistry,Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,
    Guangzhou 510640,China;2.University of Chinese Academy of Sciences,Beijing 100049,China;
    3.Key Laboratory of Shale Gas Exploration,Ministry of Land and Resources,Chongqing Institute of Geology and Mineral Resources,Chongqing 400042,China
  • Received:2014-04-12 Revised:2015-06-02 Online:2015-09-10 Published:2015-09-10

摘要:

泥页岩中的孔隙以纳米级孔隙为主,其孔径分布特征对页岩气的保存与开发具有重要影响。以渝东南地区渝参7井下志留统及上奥陶统页岩为例,开展了77.4K下N2和273.15K下CO2吸附实验,利用修正的BET方程、 DFT方法、 Stoeckli方法等分析手段,探讨了泥页岩孔结构的组成特征及孔径分布的表征方法,初步评价了页岩中微孔、介孔和宏孔的分布特征。结果表明:①渝参7井下志留统和上奥陶统页岩中的微孔、介孔、宏孔均较发育,其相对比例大致相同;②页岩中微孔孔径的均值主要集中在1.26nm处;③基于CO2吸附的Stoeckli方法得到的微孔分布曲线与基于N2吸附的DFT介孔及部分微孔孔径分布曲线在2nm处可较好地衔接,说明联合利用N2和CO2吸附数据可获取页岩中微孔、介孔和部分大孔的连续孔径分布模式。

关键词: 泥页岩, N2和CO2吸附, 孔径表征

Abstract:

The pores in shales are mainly of nanometer-scale,and their pore size distribution is very important for the preservation and exploitation of shale gas.This study is focused on the pore structures of Upper Ordovician-Lower Silurian black shales sampled from well YC7 in southeastern Chongqing area.Nitrogen and carbon dioxide gas adsorption were conducted at 77.4K and 273.15K,respectively,and the pore structures were characterized by modified BET,BJH,DFT and Stoeckli methods.The results show that:(1)All the micropores,mesopores and macropores are well developed in both Lower Silurian and Upper Ordovician shales,and their relative proportion is almost identical;(2)The mean diameter of micropore for our samples is about 1.26nm;(3)The micropore size distribution curves from the Stoeckli method using CO2 adsorption at 273.15K can be well correlated with that calculated by DFT method using nitrogen adsorption at 77.4K.This indicates that a continuous pore size distribution could be achieved for micropores,mesopores and part of macropores in shales by combing together the N2 and CO2adsorption data.

Key words: Shale gas, N2 and CO2 adsorption, Pore size distribution

中图分类号: 

  • TE122.2

[1]Curtis J B.Fractured shale-gas systems[J].AAPG Bulletin,2002,86(11):1921-1938.
[2]Zhang Jinchuan,Jin Zhijun,Yuan Mingsheng.Reservoiring mechanism of shale gas and its distribution[J].Natural Gas Industry,2004,24(7):15-18,131-132.[张金川,金之钧,袁明生.页岩气成藏机理和分布[J].天然气工业,2004,24(7):15-18,131-132.]
[3]Zou Caineng,Dong Dazhong,Wang Shejiao,et al.Geological characteristics,formation mechanism and resource potential of shale gas in China[J].Petroleum Exploration and Development,2010,37(6):641-653.[邹才能,董大忠,王社教,等.中国页岩气形成机理、地质特征及资源潜力[J].石油勘探与开发,2010,37(6):641-653.]
[4]Diaz-Campos M,Akkutlu I Y,Sondergeld C H.New pore-scale considerations for shale gas in place calculations[C]//SPE Unconventional Gas Conference,23-25 February,Pittsburgh,Pennsylvania,USA.SPE 131772,2010.
[5]Chen Shangbin,Zhu Yanming,Wang Hongyan,et al.Structure characteristics and accumulation significance of nanopores in Longmaxi shale gas reservoir in the southern Sichuan Basin[J].Journal of China Coal Society,2012,37(3):438-444.[陈尚斌,朱炎铭,王红岩,等.川南龙马溪组页岩气储层纳米孔隙结构特征及其成藏意义[J].煤炭学报,2012,37(3):438-444.]
[6]Nelson P H.Pore-throat sizes in sandstones,tight sandstones,and shales[J].AAPG Bulletin,2009,93(3):329-340.
[7]Tian H,Pan L,Xiao X,et al.A preliminary study on the pore characterization of Lower Silurian black shales in the Chuandong Thrust Fold Belt,southwestern China using low pressure N2 adsorption and FE-SEM methods[J].Marine and Petroleum Geology,2013,48:8-19.
[8]Guo Tonglou,Liu Ruobing.Implications from marine shale gas exploration breakthrough in complicated structural area at high thermal stage:Taking Longmaxi Formation in well JY1 as an example[J].Natural gas Geoscience,2013,24(4):643-651.[郭彤楼,刘若冰.复杂构造区高演化程度海相页岩气勘探突破的启示——以四川盆地东部盆缘JY1井为例[J].天然气地球科学,2013,24(4):643-651.]
[9]Sing K S W,Everett D H,Haul R A W,et al.Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity(recommendations 1984)[J].Pure and Applied Chemistry,1985,57(4):603-619.
[10]Loucks R G,Reed R M,Ruppel S C,et al.Morphology,genesis,and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J].Journal of Sedimentary Research,2009,79(12):848-861.
[11]Fredrich J T,Menendez B,Wong T F.Imaging the pore structure of geomaterials[J].Science,1995,268(5208):276-279.
[12]Nimmo J.Porosity and pore size distribution[J].Encyclopedia of Soils in the Environment,2004,3:295-303.
[13]Yang Feng,Ning Zhengfu,Kong Detao,et al.Pore structure of shales from high pressure mecury injection and nitrogen adsorption method[J].Natrual Gas Geoscience,2013,24(3):450-455.[杨峰,宁正福,孔德涛,等.高压压汞法和N2吸附法分析页岩孔隙结构[J].天然气地球科学,2013,24(3):450-455.]
[14]Giesche H.Mercury porosimetry:A general(practical)overview[J].Particle & Particle Systems Characterization,2006,23(1):9-19.
[15]Jiao Kun,Yao Suping,Wu Hao,et al.Advances in characterization of pore system of gas shales[J].Geological Journal of China Universities,2014,20(1):151-161.[焦堃,姚素平,吴浩,等.页岩气储层孔隙系统表征方法研究进展[J].高校地质学报,2014,20(1):151-161.]
[16]Clarkson C R,Jensen J L,Pedersen P K,et al.Innovative methods for flow-unit and pore-structure analyses in a tight siltstone and shale gas reservoir[J].AAPG Bulletin,2012,96(2):355-374.
[17]Kuila U,Prasad M.Specific surface area and pore-size distribution in clays and shales[J].Geophysical Prospecting,2013,61(2):341-362.
[18]Ross D J,Bustin R M.The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J].Marine and Petroleum Geology,2009,26(6):916-927.
[19]Clarkson C R,Solano N,Bustin R M,et al.Pore structure characterization of North American shale gas reservoirs using USANS/SANS,gas adsorption,and mercury intrusion[J].Fuel,2013,103:606-616.
[20]Tian Hua,Zhang Shuichang,Liu Shaobo,et al.Determination of organic-rich shale pore features by mercury injection and gas adsorption meathod[J].Acta Petrolei Sinica,2012,33(3):419-427.[田华,张水昌,柳少波,等.压汞法和气体吸附法研究富有机质页岩孔隙特征[J].石油学报,2012,33(3):419-427.]
[21]Hu H,Zhang T,Wiggins-Camacho J D,et al.Experimental investigation of changes in methane adsorption of bitumen-free Woodford Shale with thermal maturation induced by hydrous pyrolysis[J].Marine and Petroleum Geology,2015,59:114-128.
[22]Rouquerol J,Llewellyn P,Rouquerol F.Is the BET equation applicable to microporous adsorbents[M]//Llewellyn P L,Podriquez-Reinoso F,Rouqerol J,et al.Studies in Surface Science and Catalysis 160.Amsterdam:Elsevier B V,2007:49-56.
[23]Schneider P.Adsorption-isotherms of microporous mesoporous solids revisited[J].Applied Catalysis A:General,1995,129(2):157-165.
[24]Tian H,Pan L,Zhang T,et al.Pore characterization of organic-rich Lower Cambrian shales in Qiannan Depression of Guizhou Province,Southwestern China[J].Marine and Petroleum Geology,2015,62:28-43.
[25]Schoenherr J,Littke R,Urai J L,et al.Polyphase thermal evolution in the Infra-Cambrian Ara Group(South Oman Salt Basin)as deduced,by maturity of solid reservoir bitumen[J].Organic Geochemistry,2007,38(8):1293-1318.
[26]Rietveld H M.Line profiles of Neutron powder-diffraction peaks for structure refinement[J].Acta Crystallographica,1967,22:151-152.
[27]Dubinin M M,Stoeckli H F.Homogeneous and heterogeneous micropore structures in Carbonaceous adsorbents[J].Journal of Colloid and Interface Science,1980,75(1):34-42.
[28]CarrascoMarin F,AlvarezMerino M A,MorenoCastilla C.Microporous activated carbons from a bituminous coal[J].Fuel,1996,75(8):966-970.
[29]Stoeckli H F,Rebstein P,Ballerini L.On the assessment of microporosity in active carbons,a comparison of theoretical and experimental-data[J].Carbon,1990,28(6):907-909.
[30]Carrott P,Carrott M R.Evaluation of the Stoeckli method for the estimation of micropore size distributions of activated charcoal cloths[J].Carbon,1999,37(4):647-656.
[31]Xiao Xianming,Song Zhiguang,Zhu Yanming,et al.Summary of shale gas research in North American and revelations to shale gas exploration of Lower Paleozoic strata in China south area[J].Journal of China Coal Society,2013,38(5):721-727.[肖贤明,宋之光,朱炎铭,等.北美页岩气研究及对我国下古生界页岩气开发的启示[J].煤炭学报,2013,38(5):721-727.]
[32]Jarvie D M,Hill R J,Ruble T E,et al.Unconventional shale-gas systems:The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J].AAPG Bulletin,2007,91(4):475-499.
[33]Liang Digang,Chen Jianping.Oil-source correlat ions for high and over matured marine source rocks in South China[J].Petroleum Exploration and Development,2005,32(2):8-14.[梁狄刚,陈建平.中国南方高、过成熟区海相油源对比问题[J].石油勘探与开发,2005,32(2):8-14.]
[34]Xiao Xianming.Organic Petrology and Its Application to the Evaluation of Oil and Gas Generation[M].Guangzhou:Guangdong Scientific and Technical Publishing House,1992.[肖贤明.有机岩石学及其在油气评价中的应用[M].广州:广东科技出版社,1992.]
[35]Chen J,Xiao X.Evolution of nanoporosity in organic-rich shales during thermal maturation[J].Fuel,2014,129:173-181.
[36]Modica C J,Lapierre S G.Estimation of kerogen porosity in source rocks as a function of thermal transformation:Example from the Mowry Shale in the Powder River Basin of Wyoming[J].AAPG Bulletin,2012,96(1):87-108.
[37]Curtis M E,Cardott B J,Sondergeld C H,et al.Development of organic porosity in the Woodford Shale with increasing thermal maturity[J].International Journal of Coal Geology,2012,103:26-31.
[38]Barrett E P,Joyner L G,Halenda P P.The determination of pore volume and area distributions in porous substances .1.Computations from Nitrogen isotherms[J].Journal of the American Chemical Society,1951,73(1):373-380.
[39]Magee R W.Evaluation of the external surface-area of carbon-black by Nitrogen adsorption[J].Rubber Chemistry and Technology,1995,68(4):590-600.
[40]Ravikovitch P I,Neimark A V.Density functional theory model of adsorption on amorphous and microporous silica materials[J].Langmuir,2006,22(26):11171-11179.
[41]Romero-Sarmiento M F,Rouzaud J N,Bernard S,et al.Evolution of Barnett Shale organic carbon structure and nanostructure with increasing maturation[J].Organic Geochemistry,2014,71:7-16.

[1] 陈跃,马东民,吴圣,李新虎,方世跃,郭晨. 鄂尔多斯盆地东缘煤系伴生泥页岩孔隙特征及主控因素[J]. 天然气地球科学, 2018, 29(2): 189-198.
[2] 王晖,张磊,石军太,张丽霞,高潮,张亮,郭超. 鄂尔多斯盆地东南部山西组泥页岩生烃热模拟实验[J]. 天然气地球科学, 2017, 28(7): 1078-1084.
[3] 朱彤,俞凌杰,王烽. 四川盆地海相、湖相页岩气形成条件对比及开发策略[J]. 天然气地球科学, 2017, 28(4): 633-641.
[4] 陈彬滔,潘树新,方乐华,张庆石,李成刚,梁苏娟. 松辽盆地齐家—古龙凹陷青山口组泥页岩层段储层特征[J]. 天然气地球科学, 2016, 27(2): 298-308.
[5] 刘会虎,胡宝林,徐宏杰,张文永,郑凯歌,程乔. 淮南潘谢矿区二叠系泥页岩构造热演化特征[J]. 天然气地球科学, 2015, 26(9): 1696-1704.
[6] 吕海刚,于萍,闫建萍,邵德勇,贾详娟,张同伟. 四川盆地志留系龙马溪组泥页岩吸水模拟实验及对孔隙连通性的指示意义[J]. 天然气地球科学, 2015, 26(8): 1556-1562.
[7] 张文,王勤,杨晓松,段庆宝,叶建国,李霞,周洁. 扬子地块古生界泥页岩孔隙度和渗透率特征[J]. 天然气地球科学, 2015, 26(8): 1534-1539.
[8] 李香兰,刘绍文,徐明,郝春艳,王华玉. 华南下扬子区泥页岩热物性测试与分析[J]. 天然气地球科学, 2015, 26(8): 1525-1533.
[9] 王香增,刘国恒,黄志龙,孙兵华,史鹏,杨潇. 鄂尔多斯盆地东南部延长组长7段泥页岩储层特征[J]. 天然气地球科学, 2015, 26(7): 1385-1394.
[10] 王文广,郑民,王民,卢双舫,彭君,鹿坤,吴晓智,黄爱华. 页岩油可动资源量评价方法探讨及在东濮凹陷北部古近系沙河街组应用[J]. 天然气地球科学, 2015, 26(4): 771-781.
[11] 张顺,陈世悦,鄢继华,谭明友,张云银,龚文磊,王光增. 东营凹陷西部沙三下亚段—沙四上亚段泥页岩岩相及储层特征[J]. 天然气地球科学, 2015, 26(2): 320-332.
[12] 覃小丽,李荣西,王香增,刘海青. 鄂尔多斯盆地中南部地区山西组泥页岩含气量测定及方法探讨[J]. 天然气地球科学, 2015, 26(10): 1984-1991.
[13] 任泽樱,刘洛夫,高小跃,肖飞,王英,吴康军,肖正阳. 库车坳陷东北部侏罗系泥页岩吸附能力及影响因素分析[J]. 天然气地球科学, 2014, 25(4): 632-640.
[14] 久凯,丁文龙,李玉喜,张金川,曾维特. 黔北地区构造特征与下寒武统页岩气储层裂缝研究[J]. 天然气地球科学, 2012, 23(4): 797-803.
[15] 张林晔, 李政, 李钜源, 朱日房, 孙锡年. 东营凹陷古近系泥页岩中存在可供开采的油气资源[J]. 天然气地球科学, 2012, 23(1): 1-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!