天然气地球科学

• 天然气地质学 • 上一篇    下一篇

川南地区二叠系龙潭组页岩微观孔隙特征及其影响因素

张吉振,李贤庆,郭曼,董泽亮,王哲,付庆华,王飞宇   

  1. 1.中国矿业大学(北京)煤炭资源与安全开采国家重点实验室,北京100083; 
    2.中国矿业大学(北京)地球科学与测绘工程学院,北京100083;
    3.中国石油大学(北京)油气资源与探测国家重点实验室,北京102249;
    4.中国石油大学(北京)地球科学学院,北京102249
  • 收稿日期:2015-04-20 修回日期:2015-05-22 出版日期:2015-08-10 发布日期:2015-08-10
  • 通讯作者: 李贤庆(1967-),男,浙江富阳人,教授,博士生导师,主要从事煤油气地质、有机地球化学、有机岩石学等研究及教学工作. E-mail:Lixq@cumtb.edu.cn.
  • 作者简介:张吉振(1991-),男,山东济宁人,硕士研究生,主要从事页岩气地质、地球化学研究. E-mail:ZJZcumtb@126.com.
  • 基金资助:

    国家重点基础研究计划(“973”)课题(编号:2012CB214702);国土资源部公益性行业科研专项基金项目(编号:201311022);教育部高等学校博士学科点基金项目(编号:20110023110017)联合资助.

Microscopic Pore Characteristics and Its Influence Factors of the Permian Longtan Formation Shales in the Southern Sichuan Basin

ZHANG Ji-zhen,LI Xian-qing,GUO Man,DONG Ze-liang,WANG Zhe,FU Qing-hua,WANG Fei-yu   

  1. 1.State Key Laboratory of Coal Resources and Safe Mining,China University of Mining and Technology(Beijing),
    Beijing 100083,China;2.College of Geosciences and Surveying Engineering,China University of Technology(Beijing),
    Beijing 100083,China; 3.State Key Laboratory of Petroleum Resource and Prospecting,China University of Petroleum
    (Beijing),Beijing 102249,China; 4.College of Geosciences,China University of Petroleum(Beijing),Beijing 102249,China
  • Received:2015-04-20 Revised:2015-05-22 Online:2015-08-10 Published:2015-08-10

摘要:

为了评价海陆过渡相煤系页岩气储层性质,采用扫描电镜、高压压汞、低温液氮和CO2吸附等实验方法,对川南地区二叠系龙潭组页岩微观孔隙的发育情况、结构特征进行研究,并分析龙潭组页岩孔隙发育的主要影响因素。结果表明:川南地区龙潭组页岩储集空间多样,常见粒间孔、溶蚀孔和有机质孔,孔隙形态以圆形、椭圆形、三角形、不规则状为主,这些微观孔隙为页岩气赋存提供储集空间。龙潭组页岩纳米级孔隙以微孔和介孔为主,占孔隙总体积的56.2%,占总比表面积的80%以上,是页岩气赋存的主要载体;孔容与比表面积呈正相关性,其中介孔(BJH)孔容、微孔(DFT)孔容与比表面积线性关系拟合较好;页岩孔隙结构类型主要以平板狭缝型、柱形和混合型为主,孔径主要分布于0.2~1nm、3~30nm之间,平均为4.66nm。龙潭组页岩气储层孔隙发育受页岩的有机碳含量和成熟度影响较大,孔隙度和孔容随有机碳含量增大而增大,并与成熟度有密切关系;黏土矿物一定程度上利于储层孔隙发育,与页岩总孔容呈正相关性,脆性矿物则相反。

关键词: 页岩气储层, 龙潭组页岩, 微观孔隙, 孔隙结构, 气体吸附, 川南地区

Abstract:

In order to evaluate the marine-terrestrial shale gas reservoir in coal measures,the morphologic development characteristics and structure of microscopic pores in shale samples from the Permian Longtan Formation in the southern Sichuan Basin were studied,and their major influencing factors of shale pores are analyzed in this paper,by using scanning electron microscope(SEM),high-pressure mercury injection,low-temperature liquid nitrogen absoption and carbon dioxide absoption.The results show that there are many kinds of reservoir spaces,such as intergranular pores,dissolution pores and organic pores.The main pores are in circular,oval,triangular,and irregular shapes.These microscopic pores provide reservoir space for shale gas.The nano-scale pores in the Longtan Formation shale samples are dominated by micropores and mesopores.Both micropores and mesopores provide with 56.2% volume and over 80% specific surface area of total pores,and they are favorable for shale gas accumulation.There is a positive correlation between pore volume and specific surface area,and the relation between BJH volume,DFT volume and specific surface area is better.The pore structure is mainly with plate slit type,cylindricity,and mixed types.The pore aperture is mainly distributed in 0.4-1nm,3-30nm,and averaged at 4.66nm.All the organic carbon content,maturity(RO) of organic matter and clay minerals are certain favorable for the development of reservoir pores,while the content of brittle minerals has the opposite relation to it.

Key words: Shale gas reservoir, Longtan Formation shale, Microscopic pore, Pore structure, Gas adsorption, Southern Sichuan Basin

中图分类号: 

  • TE122.2
[1]Curtis J B.Fractured shale-gas systems[J].AAPG Bulletin,2002,86(11):1921-1938.
[2][JP3]Bowker K A.Barnett shale gas production,Fort Worth Basin:Issues and discussion[J].AAPG Bulletin,2007,91(4):523-533.
[3]Hill R J,Zhang Etuan,Katz B J,et al.Modeling of gas generation from the Barnett shale,Fort Worth basin,Texas[J].AAPG Bulletin,2007,91(4):501-521.
[4]Jarvie D M,Hill R J,Ruble T E,et al.Unconventional shale-gas systems:The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J].AAPG Bulletin,2007,91(4):475-499.
[5]Tian Hua,Zhang Shuichang,Liu Shaobo,et al.Determinnation of organic-rich shale pore features by mercury injection methods[J].Acta Petrolei Sinica,2012,33(3):419-427.[田华,张水昌,柳少波,等.压求法和气体吸附法研究富有机质页岩孔隙特征[J].石油学报,2012,33(3):419-427.]
[6]Dong Dazhong,Zou Caineng,Li Jianzhong,et al.Resource potential,exploration and development prospect of shale gas in the whole world[J].Geological Bulletin of China,2011,30(2/3):324-336.[董大忠,邹才能,李建忠,等.页岩气资源潜力与勘探开发前景[J].地质通报,2011,30(2/3):324-336.]
[7][KG*6/7]Long Pengyu,Zhang Jinchuan,Tang Xuan,et al.Feature of muddy shale fissure and its effect for shale gas exploration and development[J].Natural Gas Geoscience,2011,22(3):525-531.[龙鹏宇,张金川,唐玄,等.泥页岩裂缝发育特征及其对页岩气勘探和开发的影响[J].天然气地球科学,2011,22(3):525-531.]
[8]Yang Feng,Ning Zhengfu,Kong Detao,et al.Pore structure of shales from high pressure metcury injection and nitrogen adsorption method[J].Natural Gas Geoscience,2013,24(3):450-455.[杨峰,宁正福,孔德涛,等.高压压汞法和氮气吸附法分析页岩孔隙结构[J].天然气地球科学,2013,24(3):450-455.]
[9]Zhao Pei,Li Xianqing,Tian Xingwang,et al.Study on micropore structure characteristics of Longmaxi Formation shale gas reservoirs in the southern Sichuan Basin[J].Natural Gas Geoscience,2014,25(6):947-956.[赵佩,李贤庆,田兴旺,等.川南地区龙马溪组页岩气储层微孔隙结构特征[J].天然气地球科学,2014,25(6):947-956.]
[10]Zhai Guangming.Petroleum Geology of China:Vol.10[M].Beijing:Petroleum Industry Press,1989:1-109.[翟光明.中国石油地质志(卷10)[M].北京:石油工业出版社,1989:1-109.]
[11]Guo Zhengwu,Deng Kangling,Han Yonghui.The Formation and Devolution of Sichuan Basin[M].Beijing:Geological Publishing House,1996:20-105.[郭正吾,邓康龄,韩永辉.四川盆地形成演化[M].北京:地质出版社,1996:20-105.]
[12]Liang Digang,Guo Tonglou,Chen Jianping,et al.Geochemical characteristics of four suits of regional marine source rocks,Southern China(part 2): Geochemical characteristics of four suits of regional marine source rocks,South China[J].Marine Petroleum Geology,2009,14(1):1-15.[JP3][梁狄刚,郭彤楼,陈建平,等 .中国南方海相生烃成藏研究的若干新进展(二):南方四套区域性海相烃源岩的地球化学特征[J].海相油气地质,2009,14(1):1-15.]
[13]Zhang Jizhen,Li Xianqing,Liu Yang,et al.Analysis on the accumulation conditions and favorable area of shale gas from Longtan Formation in the south region of Sichuan Basin[J].Coal Geology of China,2014,26(12):1-6.[张吉振,李贤庆,刘洋,等.川南地区龙潭组页岩气成藏条件及有利区分析[J].中国煤炭地质,2014,26(12):1-6.]
[14]Loucks R G,Reed R M,Ruppel S C,et al.Morphology,genesis,and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J].Journal of Sedimentary Research,2009,79:848-861.
[15]Martini A M,Walter I M,Ku T C W,et al.Microbial production and modification oi1 gases in sedimentary basins,A geochemical case study from a Devonian shale gas play,Michigan Basin[J].AAPG Bulletin,2003,87(8):1355-1375.
[16]Yang Kan,LU Xiancai,Xu Jintan,et al.Preliminary verification of distribution of shale common calculation methods of pore size based on has adsorption isotherm[J].Journal of China Coal Society,2013,38(5):817-821.[杨侃,陆现彩,徐金覃,等.气体吸附等温线法表征页岩孔隙结构的模型适用性初探[J].煤炭学报,2013,38(5):817-821.]
[17]Roger M S,Neal R B.Pore types in the Barnett and Woodford gas shales:Contribution to understanding gas storage and migration pathways in fine-grained rocks[J].AAPG Bulletin,2011,95(12):2017-2030.
[18]Barrett E P,Joiner L G,Halenda P P.The detemnination of pore volurma and area dlistrihutiens in porous substances Ⅰ:Computations from nitrogen isothemns[J].Journal of American Chemistry,1951,73(1): 373-380.
[19]Yang Feng,Ning Zhengfu,Hu Changpeng,et al.Characterization of microscopic pore structures in shale reservoirs[J].Acta Petrolei Sinica,2013,34(2):301-311.[杨峰,宁正福,胡昌蓬,等.页岩储层微观孔隙结构特征[J].石油学报,2013,34(2):301-311.]
[20]Rouquerol J,Avnir D,Fairbridge C W,et al.Recommendations for the characterization of porous solids[J].Pure& Applied Chemistry,1994,66(8):1739-1785.
[21]Olivier J P,Conklin W B,Rouguerol J.Cliaractetization of Porous Solids[M].Amsterdam: Elsevier,1994.
[22]Curbs M E,Sondergeld C H,Ambrose R J,et al.Micro-structural investigation of gas shales in two and three dimeslions using nanometer-scale resolution imaging[J].AAPG Bulletin,2011,96(4):665-677.
[23]Bustin R M,Bustin A,Ross D,et al.Shale Gas Opportunities and Challenges[C].San Antonio,Texas:AAPG Annual Convention 2008,2008.
[24]Philip H Nelson.Pore-throat sizes in sandstones,tight sandstones,and shales[J].AAPG Bulletin,2009,93(3):329-340.
[25]Mastalerz.Shale gas and shale oil petrology and petrophysics[J].International Journal of Coal Geology,2012,103:1-2.
[26]Ji Liming,Ma Xiangxian,Xia Yanqing,et al.Relationship between methane adsorption capacity of clay minerals and micropore volume[J].Natural Gas Geoscience,2012,25(2):121-152.[吉利明,马向贤,夏燕青,等.黏土矿物甲烷吸附性能与微孔隙体积关系[J].天然气地球科学,2012,25(2):121-152.]
[1] 张世铭,王建功,张小军,张婷静,曹志强,杨麟科. 酒西盆地间泉子段储层流体赋存及渗流特征[J]. 天然气地球科学, 2018, 29(8): 1111-1119.
[2] 刘喜杰,马遵敬,韩冬,王海燕,马立涛,葛东升. 鄂尔多斯盆地东缘临兴区块致密砂岩优质储层形成的主控因素[J]. 天然气地球科学, 2018, 29(4): 481-490.
[3] 王小垚,曾联波,周三栋,史今雄,田鹤. 低阶煤储层微观孔隙结构的分形模型评价[J]. 天然气地球科学, 2018, 29(2): 277-288.
[4] 姜黎明,余春昊,齐宝权,朱涵斌,王勇军. 孔洞型碳酸盐岩储层饱和度建模新方法及应用[J]. 天然气地球科学, 2017, 28(8): 1250-1256.
[5] 刘忠宝,冯动军,高波,李洪文,聂海宽. 上扬子地区下寒武统高演化页岩微观孔隙特征[J]. 天然气地球科学, 2017, 28(7): 1096-1107.
[6] 陈术源,秦勇. 河北省北部页岩样品纳米级孔隙结构及其影响因素[J]. 天然气地球科学, 2017, 28(6): 873-881.
[7] 张大智. 利用氮气吸附实验分析致密砂岩储层微观孔隙结构特征——以松辽盆地徐家围子断陷沙河子组为例[J]. 天然气地球科学, 2017, 28(6): 898-908.
[8] 黄玉龙,刘春生,张晶晶,高有峰. 松辽盆地白垩系火山岩气藏有效储层特征及成因[J]. 天然气地球科学, 2017, 28(3): 420-428.
[9] 马明,陈国俊,李超,张功成,晏英凯,赵钊,沈怀磊. 珠江口盆地白云凹陷恩平组储层成岩作用与孔隙演化定量表征[J]. 天然气地球科学, 2017, 28(10): 1515-1526.
[10] 李凤丽,姜波,宋昱,汤政. 低中煤阶构造煤的纳米级孔隙分形特征及瓦斯地质意义[J]. 天然气地球科学, 2017, 28(1): 173-182.
[11] 黄金亮,董大忠,李建忠,胡俊文,王玉满. 陆相页岩储层孔隙分形特征——以四川盆地三叠系须家河组为例[J]. 天然气地球科学, 2016, 27(9): 1611-1618.
[12] 刘晓鹏,刘燕,陈娟萍,胡爱平. 鄂尔多斯盆地盒8段致密砂岩气藏微观孔隙结构及渗流特征[J]. 天然气地球科学, 2016, 27(7): 1225-1234.
[13] 李超正,柳广弟,曹喆,牛子铖,牛小兵,王朋,张梦媛,张凯迪. 鄂尔多斯盆地陇东地区长7段致密砂岩微孔隙特征[J]. 天然气地球科学, 2016, 27(7): 1235-1247.
[14] 吴浩,刘锐娥,纪友亮,张春林,周勇,张云钊. 典型致密砂岩气储层孔隙结构分类及其意义——以鄂尔多斯盆地盒8段为例[J]. 天然气地球科学, 2016, 27(5): 835-843.
[15] 聂昕,邹长春,孟小红,贾爽,万宇. 页岩气储层岩石三维数字岩心建模——以导电性模型为例[J]. 天然气地球科学, 2016, 27(4): 706-715.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!