天然气地球科学

• 非常规天然气 • 上一篇    下一篇

四川盆地龙马溪组页岩气地球化学特征及其地质意义

高波   

  1. 1.中国石化石油勘探开发研究院,北京 100083;2.中国石化页岩油气勘探开发重点实验室,北京 100083
  • 收稿日期:2015-02-26 修回日期:2015-05-25 出版日期:2015-06-10 发布日期:2015-06-10
  • 作者简介:高波(1969-),男,甘肃张掖人,高级工程师,博士,主要从事非常规油气地质、油气地球化学研究.E-mail:gaobo.syky@sinopec.com.
  • 基金资助:

    中国石化科技开发部项目“页岩气源—储相互关系及含气性研究”(编号:G5800-13-ZS-KJB005)资助.

Geochemical Characteristics of Shale Gas from Lower Silurian Longmaxi Formation in the Sichuan Basin and Its Geological Significance

GAO Bo   

  1. 1.Sinopec Petroleum Exploration and Production Research Institute,Beijing 100083,China;
    2.Sinopec Key Laboratory of Shale Gas/Oil Exploration & Production,Beijing 100083,China
  • Received:2015-02-26 Revised:2015-05-25 Online:2015-06-10 Published:2015-06-10

摘要:

四川盆地下志留统龙马溪组是目前我国页岩气勘探开发的重点领域。在对四川盆地源自龙马溪组的石炭系黄龙组天然气和龙马溪组页岩气的组分及同位素进行对比分析的基础上,对龙马溪组页岩气中烷烃气碳、氢同位素组成倒转的原因进行了探讨。龙马溪组页岩气中CH4含量占95.52%~99.59%,平均为98.54%;C2H6含量占0.23%~0.72%,平均为0.48%;C3H8含量占0%~0.03%;干燥系数C1/C1-5>0.99,表明龙马溪组页岩气为典型的干气;δ13C1值介于-37.3‰~-26.7‰之间,δ13C2值介于-42.8‰~-31.6‰之间,δ13C3值介于-43.5‰~-33.1‰之间,呈现出油型气特征,但烷烃气碳同位素均发生了倒转,表现为δ13C113C2;大部分页岩气烷烃气氢同位素也发生了倒转,表现为δD1>δD2。通过与国外页岩气地球化学对比分析,四川盆地龙马溪组页岩气与美国Fayetteville等高成熟度页岩气相似,主要为过成熟阶段的干酪根裂解气与页岩中早期形成的可溶有机质裂解成气的混合产物,具有页岩气富集高产的物质基础。

关键词: 四川盆地, 龙马溪组, 页岩气, 组分, 稳定同位素

Abstract:

The shale of Lower Silurian Longmaxi Formation has become a key target for shale gas exploration and development in China recently.Based on the analysis of chemical component and stable isotope composition of natural gas in Carboniferous Huanglong Formation derived from Longmaxi Formation and Longmaxi shale gas itself,the reason of carbon and hydrogen isotopic reversal in shale gas is discussed in this paper.The shale gas is mainly composed of hydrocarbon gas in which CH4content is in range of 95.52%-99.59%,C2H6 of 0.23%-0.72%,and C3H8of 0%-0.03%.The drying coefficient (C1/C1-5) is more than 0.99,indicating typical dry gas.δ13C1 values range from -37.3‰ to -26.7‰,δ13C2 from -42.8‰ to -31.6‰,and δ13C3 from -43.5‰ to -33.1‰,respectively.The carbon isotope values indicate that the hydrocarbon gas is oil-derived gas.However,the reversal of carbon and hydrogen isotopes of hydrocarbon gases in shale gas occurs,i.e.δ13C113C2,δD1>δD2.The geochemical characteristic of high thermal maturity and reversal carbon isotopes in the Longmaxi shale gas is similar with the Fayetteville shale gas in US.The Longmaxi shale gas is mixing of gases from decomposition of kerogen at high thermal maturity and cracking of soluble organic matter retained in the shale,suggesting there would be abundant shale gas resource for high productivity.

Key words: Sichuan Basin, Longmaxi Formation, Shale gas, Component, Stable isotope composition

中图分类号: 

  • TE122.1

[1]US Energy Information Administration.Annual Energy Outlook 2014 with Projections to 2040[R].DOE/EIA-0383,2014.
[2]Zhang Jinchuan,Xue Hui,Zhang Deming.Shale gas and its reservoiring mechanism[J].Geoscience,2003,17(4):468.[张金川,薛会,张德明.页岩气及其成藏机理[J].现代地质,2003,17(4):468]
[3]Zhang Jinchuan,Jin Zhijun,Yuan Mingsheng,et al.Reservoiring mechanism of shale gas and its distribution[J].Natural Gas Industry,2004,24(7):15-18.[张金川,金之钧,袁明生,等.页岩气成藏机理和分布[J].天然气工业,2004,24(7):15-18.]
[4]Chen Jianyu,Tan Daqing,Yang Chupeng.Advances in the research and exploration of unconventional petroleum system[J].Geological Science and Technology Information,2003,22(4):55-59.[陈建渝,唐大卿,杨楚鹏.非常规含气系统的研究和勘探进展[J].地质科技情报,2003,22(4):55-59.]
[5]Zheng Junwei,Sun Deqiang,Li Xiaoyan,et al.Advances in exploration and exploitation technologies of shale gas[J].Natural Gas Geoscience,2011,22(3):511-517.[郑军卫,孙德强,李小燕,等.页岩气勘探开发技术进展[J].天然气地球科学,2011,22(3):511-517.]
[6]Tian Xin,Zhang Leichun,Li Xiaoyan,et al.A bibliometrical analysis of shale gas research[J].Natural Gas Geoscience,2014,25(11):1804-1810.[田欣,张蕾春,李小燕,等.国际页岩气研究进展:基于文献计量分析[J].天然气地球科学,2014,25(11):1804-1810.]
[7]Ma Yongsheng,Feng Jianhui,Mu Zehui,et al.The potential and exploring progress of unconventional hydrocarbon resources in Sinopec[J].Engineering Sciences,2012,14(6):22-30.[马永生,冯建辉,牟泽辉,等.中国石化非常规油气资源潜力及勘探进展[J].中国工程科学,2012,14(6):22-30.]
[8]Dong Dazhong,Zou Caineng,Yang Hua,et al.Progress and prospects of shale gas exploration and development in China[J].Acta Petrolei Sinica,2012,33(supplement 1):107-114.[董大忠,邹才能,杨桦,等.中国页岩气勘探开发进展与发展前景[J].石油学报,2012,33(增刊1):107-114.]
[9]Wang Xiangzeng,Gao Shengli,Gao Chao.Geological features of Mesozoic continental shale gas in south of Ordos Basin,NW China[J].Petroleum Exploration and Development,2014,41(3):294-304.[王香增,高胜利,高潮.鄂尔多斯盆地南部中生界陆相页岩气地质特征[J].石油勘探与开发,2014,41(3):294-304.
[10]Wang Zhigang.Breakthrough of Fuling shale gas exploration and development and its inspiration[J].Oil & Gas Geology,2015,36(1):1-6.[王志刚.涪陵页岩气勘探开发重大突破与启示[J].石油与天然气地质,2015,36(1):1-6.]
[11]Ferworn K,Zumberge J,Reed J,et al.Gas Character Anomalies Found in Highly Productive Shale Gas Wells[R/OL].http://www.papgrocks.org/ferworn_p.pdf.2008.
[12]Rodriguez N D,Philp R P.Geochemical characterization of gases from the Mississippian Barnett Shale,Fort Worth Basin,Texas[J].AAPG Bulletin,2010,94(11):1641-1656.
[13]Tilley B,McLellan S,Hiebert S,et al.Gas isotope reversals in fractured gas reservoirs of the western Canadian Foothills:Mature shale gases in disguise[J].AAPG Bulletin,2011,95(8):1399-1422.
[14]Zumberge J,Ferworn K,Brown S.Isotopic reversal(‘rollover’) in shale gases produced from the Mississippian Barnett and Fayetteville formations[J].Marine and Petroleum Geology,2012,31(1):43-52.
[15]Xia X,Chen J,Braun,et al.Isotope reversals with respect to maturity trends due to mixing of primary and secondary products in source rocks[J].Chemical Geology,2013,339:205-212.
[16]Tilley B,Muehlenbachs K.Isotope reversals and universal stages and trends of gas maturation in sealed,self-contained petroleum systems[J].Chemical Geology,2013,339:194-204.
[17]Hao F,Zou  H.Cause of shale gas geochemical anomalies and mechanisms for gas enrichment and depletion in high-maturity shales[J].Marine and Petroleum Geology,2013,44(1):1-12.
[18]Dai J,Zou C,Liao S,et al.Geochemistry of the extremely high thermal maturity Longmaxi shale gas,southern Sichuan Basin[J].Organic Geochemistry,2014,74:3-12.
[19]Gao L,Schimmelmann A,Tang Y.Isotope rollover in shale gas observed in laboratory pyrolysis experiments: Insight to the role of water in thermogenesis of mature gas[J].Organic Geochemistry,2014,68:95-106.
[20]Burruss R C,Laughrey C D.Carbon and hydrogen isotopic reversals in deep basin gas:Evidence for limits to the stability of hydrocarbons[J].Organic Geochemistry,2010,42:1285-1296.
[21]Xia X,Tang Y.Isotope fractionation of methane during natural gas flow with coupled diffusion and adsorption/ desorption[J].Geochimica et Cosmochimica Acta,2012,77:489-503.
[22]Zhang T,Yang R,Milliken K,et al.Chemical and isotope composition of gases released by crush methods from organic rich mudrocks[J].Organic Geochemistry,2014,73:16-28.
[23]Seewald J S.Organic-inorganic interactions in petroleum-producing sedimentary basins[J].Nature,2003,426(6964):327-333.
[24]Tang Y,Xia X.Quantitative Assessment of Shale Gas Potential Based on Its Special Generation and Accumulation Processes(Abstract)[R/OL].American Association of Petroleum Geologist Annual Meeting,Houston.Search and Discovery Article #40819.http://www.searchanddiscovery.com/documents/2011/40819tang/ndx_tang.pdf.[2012-02-12]
[25]Gai Haifeng,Xiao Xianming.Mechanism and application of carbon isotope reversal of shale gas[J].Journal of China Coal Society,2014,38(5):827-833.[盖海峰,肖贤明.页岩气碳同位素倒转:机理与应用[J].煤炭学报,2014,38(5):827- 833.]
[26]Wang Langsheng,Li Zongyin,Shen Ping,et al.On the hydrocarbon generation conditions of the large and middle scale gas fields in eastern part of Sichuan Basin[J].Natural Gas Geoscience,2004,15(6):567-571.[王兰生,李宗银,沈平,等.四川盆地东部大中型气藏成烃条件分析[J].天然气地球科学,2004,15(6):567-571.]
[27]Dai Jinxing,Ni Yunyan,Huang Shipeng.Discussion on the carbon isotopic reversal of alkane gases from the Huanglong Formation in the Sichuan Basin,China[J].Acta Petrolei Sinica,2010,31(5):710-717.[戴金星,倪云燕,黄士鹏.四川盆地黄龙组烷烃气碳同位素倒转成因的探讨[J].石油学报,2010,31(5):710-717.]
[28]Liu Quanyou,Jin Zhijun,Gao Bo,et al.Origin of sour gas in the Northeastern Sichuan Basin and fate action of thermochemical sulfate reduction(TSR)to natural gas[J].Acta Geologic Sinica,2009,83(8):1195-1202.[刘全有,金之钧,高波,等.川东北地区酸性气体中CO2成因与TSR作用的影响[J].地质学报,2009,83(8):1195-1202.]
[29]Martini A M,Walter L M,Mclntosh J C.Identification of microbial and thermogenic gas components from Upper Devonian black shale cores,Illinois and Michigan basins[J].AAPG Bulletin,2008,92(3):327-339.
[30]Zhu Guangyou,Zhang Shuichang,Liang Yingbo,et al.Stable sulfur isotopic composition of hydrogen sulfide and its genesis in Sichuan Basin[J].Geochimica,2006,35(4):432-442.[朱光有,张水昌,梁英波,等.四川盆地H2S的硫同位素组成及其成因探讨[J].地球化学,2006,35(4):432-442.]
[31]Liu Wenhui,Tengger,Gao Bo,et al.H2S formation and enrichment mechanism in medium to large scale natural gas fields(reservoirs)in Sichuan Basin[J].Petroleum Exploration and Development,2010,37(5):513-522.[刘文汇,腾格尔,高波,等.四川盆地大中型天然气田(藏)中H2S形成及富集机制[J].石油勘探与开发,2010,37(5):513-522.]
[32]Huang Shipeng,Liao Fengrong,Wu Xiaoqi,et al.Distribution characteristics of hydrogen sulphide bearing gas pools and the genesis of hydrogen sulphide in Sichuan Basin[J].Natural Gas Geoscience,2010,21(5):705-714.[黄士鹏,廖凤蓉,吴小奇,等.四川盆地含H2S气藏分布特征及硫化氢成因探讨[J].天然气地球科学,2010,21(5):705-714.]
[33]Chung H M,Gormly J R,Squires R M.Origin of gaseous hydrocarbons in subsurface environments: theoretical considerations of carbon isotope distribution[J].Chemical Geology,1988,71(1-3):97-104.
[34]Dai Jinxing,Xia Xinyu,Qin Shengfei,et al.Causation of partly reversed orders of δ13C  in biogenic alkane gas in China[J].Oil & Gas Geology,2003,24(1):1-6.[戴金星,夏新宇,秦胜飞,等.中国有机烷烃气碳同位素系列倒转的成因[ J ].石油与天然气地质,2003,24(1):1-6.]
[35]Hao Fang,Guo Tonglou,Zhu Yangming,et al.Evidence for multiple stage of oil cracking and thermochemical sulfate reduction in the Puguang Gasfield,Sichuan Basin,China[J].AAPG Bulletin,2008,92(5):611-637.
[36]Dai J,Song Y,Dai C,et al.Geochemistry and accumulation of carbon dioxide gases in China[J].AAPG Bulletin,1996,80(10):1615-1626.
[37]Liu Q,Jin Z,Wu X,et al.Origin and carbon isotope fractionation of CO2 in marine sour gas reservoirs in the Eastern Sichuan Basin[J].Organic Geochemistry,2014,74:22-32.
[38]Shen P,Shen Q,Wang X,et al.Characteristics of the isotope composition of gas form hydrocarbon and identification of coal-type gas[J].Science in China:Series B,1988,31(6):734-747.
[39]Liu Q,Dai J,Li J,et al.Hydrogen isotope composition of natural gases from the Tarim Basin and its indication of depositional environments of the source rocks[J].Science in China:Series D,2008,51(2):300-311
[40]Wang Xiaofeng,Liu Wenhui,Xu Yongchang,et al.The Hydrogen isotopic composition of natural gases generated from different pathway[J].Natural Gas Geoscience,2006,17(2):163-169.[王晓锋,刘文汇,徐永昌,等.不同成因天然气的氢同位素组成特征研究进展[J].天然气地球科学,2006,17(2):163-169.]
[41]Behar F,Kressmann S,Rudkiewicz J L,et al.Experimental simulation in a confined system and kinetic modelling of kerogen and oil cracking[J].Organic Geochemistry,1992,19(1-3):173-189
[42]Liu Wenhui,Zhang Jianyong,Fan Ming,et al.Gas generation character of dissipated soluble organic matter[J].Petroleum Geology & Experiment,2007,29(1):1-6.[刘文汇,张建勇,范明,等.叠合盆地天然气的重要来源-分散可溶有机质[J].石油实验地质,2007,29(1):1-6.]
[43]Nie Haikuan,Zhang Jinchuan,Bao Shujing,et al.Shale gas accumulation conditions of the Upper Ordovician-Lower Silurian in Sichuan Basin and its periphery[J].Oil & Gas Geology,2012,33(3):335-345.[聂海宽,张金川,包书景,等.四川盆地及其周缘上奥陶统—下志留统页岩气聚集条件[J].2012,33(3):335-345.]

[1] 赵文韬,荆铁亚,吴斌,周游,熊鑫. 断裂对页岩气保存条件的影响机制——以渝东南地区五峰组—龙马溪组为例[J]. 天然气地球科学, 2018, 29(9): 1333-1344.
[2] 夏鹏,王甘露,曾凡桂,牟雨亮,张昊天,刘杰刚. 黔北地区牛蹄塘组高—过成熟页岩气富氮特征及机理探讨[J]. 天然气地球科学, 2018, 29(9): 1345-1355.
[3] 王朋飞,姜振学,吕鹏,金璨,李鑫,黄璞. 重庆周缘下志留统龙马溪组和下寒武统牛蹄塘组页岩有机质孔隙发育及演化特征[J]. 天然气地球科学, 2018, 29(7): 997-1008.
[4] 康毅力,豆联栋,游利军,陈强,程秋洋. 富有机质页岩增产改造氧化液浸泡离子溶出行为[J]. 天然气地球科学, 2018, 29(7): 990-996.
[5] 曾凡辉,王小魏,郭建春,郑继刚,李亚州,向建华. 基于连续拟稳定法的页岩气体积压裂水平井产量计算[J]. 天然气地球科学, 2018, 29(7): 1051-1059.
[6] 朱维耀,马东旭. 页岩储层有效应力特征及其对产能的影响[J]. 天然气地球科学, 2018, 29(6): 845-852.
[7] 余川,曾春林,周洵,聂海宽,余忠樯. 大巴山冲断带下寒武统页岩气构造保存单元划分及分区评价[J]. 天然气地球科学, 2018, 29(6): 853-865.
[8] 邱 振,邹才能,李熙喆,王红岩,董大忠,卢斌,周尚文,施振生,冯子齐,张梦琪. 论笔石对页岩气源储的贡献——以华南地区五峰组—龙马溪组笔石页岩为例[J]. 天然气地球科学, 2018, 29(5): 606-615.
[9] 王涛利,郝爱胜,陈清,李,王庆涛,卢鸿,刘大永. 中扬子宜昌地区五峰组和龙马溪组页岩发育主控因素[J]. 天然气地球科学, 2018, 29(5): 616-631.
[10] 汪道兵,葛洪魁,宇波,文东升,周珺,韩东旭,刘露. 页岩弹性模量非均质性对地应力及其损伤的影响[J]. 天然气地球科学, 2018, 29(5): 632-643.
[11] 龙胜祥,冯动军,李凤霞,杜伟. 四川盆地南部深层海相页岩气勘探开发前景[J]. 天然气地球科学, 2018, 29(4): 443-451.
[12] 贺领兄,宋维刚,安生婷,徐永锋,沈娟,路超,王军. 青海东昆仑地区八宝山盆地烃源岩有机地球化学特征与页岩气勘探前景[J]. 天然气地球科学, 2018, 29(4): 538-549.
[13] 邢 舟,曹高社,毕景豪,周新桂,张交东. 南华北盆地禹州地区ZK0606钻孔上古生界煤系烃源岩评价[J]. 天然气地球科学, 2018, 29(4): 518-528.
[14] 王宏坤,吕修祥,王玉满,慕瑄,张琰,钱文文,陈佩佩. 鄂西下志留统龙马溪组页岩储集特征[J]. 天然气地球科学, 2018, 29(3): 415-423.
[15] 卢文涛,李继庆,郑爱维,梁榜,张谦,杨文新. 涪陵页岩气田定产生产分段压裂水平井井底流压预测方法[J]. 天然气地球科学, 2018, 29(3): 437-442.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!