天然气地球科学

• 非常规天然气 • 上一篇    下一篇

页岩气储层可压性评价新方法

赵金洲,许文俊,李勇明,胡晋阳,李晋秦   

  1. 1.西南石油大学“油气藏地质及开发工程”国家重点实验室,四川 成都 610500;
    2.宝石机械成都装备制造分公司,四川 成都 610051
  • 收稿日期:2014-09-01 修回日期:2014-10-30 出版日期:2015-06-10 发布日期:2015-06-10
  • 通讯作者: 许文俊(1991-),男,湖北仙桃人,硕士研究生,主要从事水力压裂裂纹扩展形态研究.E-mail:746929967@qq.com.
  • 作者简介:赵金洲(1962-),男,湖北仙桃人,教授,博士生导师,主要从事油气藏增产理论与新技术研究.E-mail:zhaojz@swpu.edu.cn.
  • 基金资助:

    新世纪优秀人才支持计划(编号:NCET-11-1062);国家重点基础研究发展计划(“973”)项目(编号:2013CB228004);四川省杰出青年学术技术带头人资助计划(编号:2012JQ0010)联合资助.

A New Method for Fracability Evaluation of Shale-gas Reservoirs

ZHAO Jin-zhou,XU Wen-jun,LI Yong-ming,HU Jin-yang,LI Jin-qin   

  1. 1.State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,
    Southwest Petroleum University,Chengdu 610500,China;
    2.Gem machinery Chengdu Equipment Manufacturing Branch Company,Chengdu 610051,China
  • Received:2014-09-01 Revised:2014-10-30 Online:2015-06-10 Published:2015-06-10

摘要:

可压性是表征页岩储层能被有效改造的难易程度。根据页岩储层缝网压裂施工实践,通过具体化页岩储层“有效压裂”概念,明确了页岩储层可压性的实际意义,即在相同压裂工艺技术条件下,页岩气储层中形成复杂裂缝网络并获得足够大的储层改造体积的概率以及获取高经济效益的能力。现有评价方法由于分析因素不够全面导致评价效果不理想。通过综合页岩脆性、断裂韧性和天然弱面3个方面特性,提出了能全面、科学表征页岩气可压性的评价方法,摒弃了现有方法的不足。基于储层各参数特征,可将该方法的可压性程度分为三级:可压性系数介于0~0.225之间,可压性程度较低,压裂效果差;可压性系数介于0.225~0.5之间,可压性程度一般,压裂效果较好;可压性系数介于0.5~0.8之间,可压性程度较高,缝网压裂效果理想。采用新的评价方法计算得出四川盆地下志留统龙马溪组页岩可压性系数为0.392 8,可压性程度一般,与该区域页岩气井缝网压裂改造时的微地震监测结果一致,说明新方法计算准确,现场应用方便,可为压裂选井、选层提供前期指导。

关键词: 页岩气, 可压性评价, 脆性, 断裂韧性, 天然弱面, 可压性系数

Abstract:

Fracability is the capability of the shale that can be fractured effectively during hydraulic fracturing.According to the network fracturing construction practice of shale reservoir,by externalizing shale reservoir “effective fracturing” concept,the practical significance of fracability evaluation of shale-gas reservoirs has been clarified.So this can be described as the probability to create a complexity fracture network and large stimulated reservoir volume in shale gas reservoir to obtain high economic benefits under the same condition fracturing technology.The consideration of the existing evaluation methods for many reasons influencing fracability was not quite comprehensive,which leads to the inaccuracy.Proposing a new method to evaluate the fracability of shale-gas reservoirs by taking into consideration of the factors of brittleness,fracture toughness and natural planes of weakness,is more comprehensive and scientific than before.Shale fracability can be divided into three levels according to the reservoir parameters.Shale with low fracability (fracablity index of 0-0.225) couldn′t be stimulated effectively.Shale with medium fracability (fracablity index is 0.225-0.5) could be stimulated effectively but the effect is actually modest.Shale with high fracability (fracablity index of 0.5-0.8) is the best choice to be fractured.It is better to choose shale with fracability index above 0.5.The new method was applied to Longmaxi shale in the Sichuan Basin.The fracability index is 0.392 8 and the fracability is modest,which agrees with result of microseismic monitoring.Applications in the Longmaxi shale show that the results of calculation are correct and soundly based and that the suggested method is practicable for use,which can be used in the selection of wells or layers for fracturing.

Key words: Shale gas, Fracability, Brittleness, Fracture toughness, Natural planes of weakness, Fracability index

中图分类号: 

  • TE132.2

[1]Long Pengyu,Zhang Jinchuan,Tang Xuan,et al.Feature of muddy shale fissure and its effect for shale gas exploration and development[J].Natural Gas Geoscience,2011,22(3):525-532.[龙鹏宇,张金川,唐玄,等.泥页岩裂缝发育特征及其对页岩气勘探和开发的影响[J].天然气地球科学,2011,22(3):525-532.]
[2]Cheng Yuanfang,Chang Xin,Sun Yuanwei,et al.Research on fracture network propagation pattern of shale reservoir base on fracture mechanics[J].Natural Gas Geoscience,2014,25(4):603-611.[程远方,常鑫,孙元伟,等.基于断裂力学的页岩储层缝网延伸形态研究[J].天然气地球科学,2014,25(4):603-611.]
[3]Zhao Jinzhou,Yang Hai,Li Yongming,et al.Stability of the natural fracture when the hydraulic fracture is approaching[J].Natural Gas Geoscience,2014,25(3):402-408.[赵金洲,杨海,李勇明,等.水力裂缝逼近时天然裂缝稳定性分析[J].天然气地球科学,2014,25(3):402-408.]
[4]Chong K K,Grieser W V,Passman A.A completions guide book to shale-play stimulation in the last two decades[C] //Proceedings of Canadian Unconventional Resources and International Petroleum Conference,19-21 October,SPE 133874.Calgary,Albetta,Canada:CSUG/SPE,2010.
[5]Tang Ying,Xing Yun,Li Lezhong,et al.Influence factors and evaluation methods of the gas shale fracability[J].Earth Science Frontiers,2012,19(5):356-363.[唐颖,邢云,李乐忠,等.页岩储层可压裂性影响因素及评价方法[J].地质前缘,2012,19(5):356-363.]
[6]Zhou Caineng,Dong Dazhong,Yang Hua,et al.Conditions of shale gas accumulation and exploration practices in China[J].Natural Gas Industry,2011,31(12):26-39.[邹才能,董大忠,杨桦,等.中国页岩气形成条件及勘探实践[J].天然气工业,2011,31(12):26-39.]
[7]Bustin R M,Bustin A M M,Cui A,et al.Impact of shale properties on pore structure and storage characteristics[C]//Paper 142890-MS Presented at the 2008 SPE Shale Gas Production Conference held in Fort Worth,Texas,U.S.A.,16-18 November 2008.DOI:http://dx.doi.org/10.2118/119892-MS.
[8]Zou Caineng.Unconventional Oil and Gas Geology[M].Beijing:Geological Publishing House,2013:127-167.[邹才能.非常规油气地质[M].北京:地质出版社,2013:127-167.]
[9]Mayerhofer M J,Lolon E,Warpinski N R,et al.What is stimulated rock volume[C]//Paper 119890-MS Presented at the 2008 SPE Shale Gas Production Conference held in Fort Worth,Texas,U.S.A.,16-18 November 2008.DOI:http://dx.doi.org/10.2118/119890-MS.
[10]King G E.Thirty years of gas shale fracturing:What have we learned[C]//Paper 133456-MS Presented at the SPE Annual Technical Conference and Exhibition held in Florence,Italy,19-22 September 2010.DOI:http://dx.doi.org/10.2118/133456-MS.
[11]Chen Zuo,Xue Chengjin,Jiang Tingxue,et al.Proposals for the application of fracturing by stimulated reservoir volume(SRV) in shale gas wells in China[J].Natural Gas Industry,2010,30(10):30-32.[陈作,薛承瑾,蒋廷学,等.页岩气井体积压裂技术在我国的应用建议[J].天然气工业,2010,30(10):30-32.]
[12]Enderlin M,Alsleben H,Beyer J A.Predicting fracability in Shale Reservoirs[C]//AAPG Annual Convention and Exhibition.Houston,Texas,USA,2011:10-13.
[13]Mullen M,Enderlin M.Fracability Index-More Than Just Calculating Rock Properties,SPE 159755[C]//Paper 159755-MS Presented  at  the SPE Annual Technical Conference and Exhibition,San Antonio,Texas,USA,8-10 October 2012.
[14]Beugelsdijk L J L,De Pater C J,Sato K.Experimental hydraulic fracture propagation in a multi-fractured medium[C]//Paper 59419-MS Presented at the 2000 SPE Asia Pacific Conference on Integrated Modelling for Asset Management held in Yokohama,Japan,25-26 April 2000.DOI:http://dx.doi.org/10.2118/59419-MS.
[15]Yuan Junliang,Deng Jingen,Zhang Dingyu,et al.Fracability evaluation of shale-gas reservoirs[J].Acta Petrolei Sinica,2013,34(3):523-527.[袁俊亮,邓金根,张定宇,等.页岩气储层可压裂性评价技术[J].石油学报,2013,34(3):523-527.]
[16]Zhang B,Roegiers J C,Jin X,et al.Fracability evaluation in shale reservoirs-an integrated petrophysics and geomechanics approach[C]//Paper 168589-MS Presented at the SPE Hydraulic Fracturing Technology Conference held in The Woodlands,Texas,USA,4-6 February 2014.DOI:http://dx.doi.org/10.2118/168589-MS.
[17]Jin Yan,Chen Mian,Zhang Xudong.Determination of fracture toughness for deep well rock with geophysical logging data[J].Chinese Journal of Rock Mechanics and Engineering,2001,20(4):454-456.[金衍,陈勉,张旭东.利用测井资料预测深部地层岩石断裂韧性[J].岩石力学与工程学报,2001,20(4):454-456.]
[18]Jin Yan,Chen Mian,Wang Huaiying,et al.Study on prediction method of fracture toughness of rock mode Ⅱ by logging data[J].Chinese Journal of Rock Mechanics and Engineering,2008,27(2):3630-3635.[金衍,陈勉,王怀英,等.利用测井资料预测岩石Ⅱ型断裂韧性的方法研究[J].岩石力学与工程学报,2008,27(2):3630-3635.]
[19]Jia Changgui,Li Shuangming,Wang Haitao,et al.Shale reservoir network fracturing technology research and experiment[J].China Engineering Science,2012,14(6):106-112.[贾长贵,李双明,王海涛,等.页岩储层网络压裂技术研究与试验[J].中国工程科学,2012,14(6):106-112.]
[20]Gu H,Weng X,Lund J B,et al.Hydraulic fracture crossing natural fracture at nonorthogonal angles:a criterion and its validation[J].SPE Production & Operations,2012,27(1):20-26.
[21]Cheng Wan,Jin Yan,Chen Mian,et al.A criterion for identifying hydraulic fractures crossing natural fractures in 3D space[J].Petroleum Exploration and Development,2014,41(3):336-340.[程万,金衍,陈勉,等.三维空间中水力裂缝穿透天然裂缝的判别准则[J].石油勘探与开发,2014,41(3):336-340.]

[1] 赵文韬,荆铁亚,吴斌,周游,熊鑫. 断裂对页岩气保存条件的影响机制——以渝东南地区五峰组—龙马溪组为例[J]. 天然气地球科学, 2018, 29(9): 1333-1344.
[2] 夏鹏,王甘露,曾凡桂,牟雨亮,张昊天,刘杰刚. 黔北地区牛蹄塘组高—过成熟页岩气富氮特征及机理探讨[J]. 天然气地球科学, 2018, 29(9): 1345-1355.
[3] 康毅力,豆联栋,游利军,陈强,程秋洋. 富有机质页岩增产改造氧化液浸泡离子溶出行为[J]. 天然气地球科学, 2018, 29(7): 990-996.
[4] 曾凡辉,王小魏,郭建春,郑继刚,李亚州,向建华. 基于连续拟稳定法的页岩气体积压裂水平井产量计算[J]. 天然气地球科学, 2018, 29(7): 1051-1059.
[5] 朱维耀,马东旭. 页岩储层有效应力特征及其对产能的影响[J]. 天然气地球科学, 2018, 29(6): 845-852.
[6] 余川,曾春林,周洵,聂海宽,余忠樯. 大巴山冲断带下寒武统页岩气构造保存单元划分及分区评价[J]. 天然气地球科学, 2018, 29(6): 853-865.
[7] 邱 振,邹才能,李熙喆,王红岩,董大忠,卢斌,周尚文,施振生,冯子齐,张梦琪. 论笔石对页岩气源储的贡献——以华南地区五峰组—龙马溪组笔石页岩为例[J]. 天然气地球科学, 2018, 29(5): 606-615.
[8] 汪道兵,葛洪魁,宇波,文东升,周珺,韩东旭,刘露. 页岩弹性模量非均质性对地应力及其损伤的影响[J]. 天然气地球科学, 2018, 29(5): 632-643.
[9] 龙胜祥,冯动军,李凤霞,杜伟. 四川盆地南部深层海相页岩气勘探开发前景[J]. 天然气地球科学, 2018, 29(4): 443-451.
[10] 贺领兄,宋维刚,安生婷,徐永锋,沈娟,路超,王军. 青海东昆仑地区八宝山盆地烃源岩有机地球化学特征与页岩气勘探前景[J]. 天然气地球科学, 2018, 29(4): 538-549.
[11] 邢 舟,曹高社,毕景豪,周新桂,张交东. 南华北盆地禹州地区ZK0606钻孔上古生界煤系烃源岩评价[J]. 天然气地球科学, 2018, 29(4): 518-528.
[12] 卢文涛,李继庆,郑爱维,梁榜,张谦,杨文新. 涪陵页岩气田定产生产分段压裂水平井井底流压预测方法[J]. 天然气地球科学, 2018, 29(3): 437-442.
[13] 鲍祥生,谈迎,吴小奇,郑红军. 利用纵横波速度法预测泥页岩脆性矿物指数[J]. 天然气地球科学, 2018, 29(2): 245-250.
[14] 梁榜,李继庆,郑爱维,卢文涛,张谦. 涪陵页岩气田水平井开发效果评价[J]. 天然气地球科学, 2018, 29(2): 289-295.
[15] 王延山, 胡英杰, 黄双泉, 康武江, 陈永成. 渤海湾盆地辽河坳陷天然气地质条件、资源潜力及勘探方向[J]. 天然气地球科学, 2018, 29(10): 1422-1432.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!