天然气地球科学

• 天然气地球化学 • 上一篇    下一篇

塔河油田不同类型海相原油裂解动力学分析

马安来   

  1. 中国石油化工股份有限公司石油勘探开发研究院,北京 100083
  • 收稿日期:2014-10-28 修回日期:2014-11-28 出版日期:2015-06-10 发布日期:2015-06-10
  • 作者简介:马安来(1969-),男,安徽淮南人,副教授,博士,主要从事油气地球化学和成藏机理研究. E-mail:maal.syky@sinopec.com.
  • 基金资助:

    国家重点基础发展规划(“973”)项目(编号:2012CB214800;2005CB422108);中国石化科技部项目(编号:P07021);国家科技重大专项(编号:2011ZX05005;2008ZX05005)联合资助.

Kinetics of Oil-cracking of Different Types of Marine Oils from Tahe Oilfield,Tarim Basin,NW China

MA An-lai   

  1. Exploration & Production Research Institute,SINOPEC,Beijing 100083,China
  • Received:2014-10-28 Revised:2014-11-28 Online:2015-06-10 Published:2015-06-10

摘要:

应用黄金管热模拟方法研究了塔里木盆地塔河油田稠油、正常原油和高蜡原油3种不同类型海相原油热解过程的气态烃产率、碳同位素特征。塔里木盆地3种不同类型海相原油具有相似的生烃过程,随着热解温度的增高,甲烷产率不断增加,C2—C5产率呈现先增加后降低的趋势。在生烃量上,高蜡原油具有最高的总气态烃产率,为464mg/g,而稠油具有最低的气态烃产率,为316mg/g。在同位素演化过程中,δ13C1值先变小后变大,δ13C2值、δ13C3值在温度大于420℃以后均呈现逐渐变大特征。使用Kinetics软件,计算了3种不同类型原油总气质量生成活化能。在频率因子为1.78×1014s-1的前提下,3个原油气体质量产率的活化能分布较窄,范围为56~66kcal/mol。相比较而言,稠油总气体质量产率活化能分布范围最宽,主频活化能最低。使用原油动力学参数,根据油气藏破坏比例系数,计算塔里木盆地塔河原油作为油相保存的地质温度范围为178~206℃。塔中隆起中深 1井中寒武统挥发性油藏的存在证实了上述结论。

关键词: 原油裂解, 动力学, 原油稳定性, 海相原油, 稠油, 正常原油, 高蜡原油, 塔里木盆地

Abstract:

The C1-C5 gas generation,carbon isotope ratios during cracking of heavy,normal and high-waxy marine oils from Tahe Oilfield,Tarim Basin,NW China,were described with closed-gold tube under high pressure.Three types of oil have similar gas-generation process,with C1 yield increasing with pyrolytic temperature and C2-C5 yield increasing at first then decreasing with the temperature.Heavy-waxy oil has the highest C1-C5 yield of 510mg/g,whereas heavy oil has the lowest C1-C5 yield of 316mg/g.The δ13C1 value was light at first,but gradually became heavier with the increase of pyrolytic temperature.However,the δ13C2 and δ13C3 values gradually became heavier when the temperature was greater than 420℃.Using kinetics software,the kinetic parameters of C1-C5 of different type of marine oils were calculated.With the frequency factor of about 1.78×1014s-1,the distribution of the activation energy of C1-C5 mass formation was relatively narrow,with the range from 56 to 66kcal/mol.Among the three types of oil,heavy oil has the widest activation energy distribution,with the lowest major frequency of activation energy.Based on the kinetic parameters,in combination with the fractional conversion(C)of oil to gas,the maximum temperature at which oil can be preserved as a separate oil phase varies from about 178℃ at geological slow heating rates to 206℃ at geological fast heating rates.The existence of Middle Cambrian volatile reservoir of well Zhongshen 1 from Tazhong Uplift provided a strong evidence for the conclusion.

Key words: Oil-cracking, Kinetics, Oil stability, Marine oil, Heavy oil, Normal oil, High-waxy oil, Tarim Basin

中图分类号: 

  • TE132.4

[1]Mango F D.The stability of hydrocarbons under the time-temperature conditions of petroleum genesis[J].Nature,1991,352(11):146-148.
[2]Hayes J M.Stability of petroleum[J].Nature,1991,352(11):108-109.
[3]Quigley T M,Mackenzie A S.The temperature of oil and gas formation in the sub-surface[J].Nature,1988,333(9):549-552.
[4]McNeil R I,BeMent W O.Thermal stability of hydrocarbon:Laboratory criteria and field example[J].Energy & Fuel,1996,10(1):60-67.
[5]Brigaud F.HP-HT Petroleum System Prediction from Basin to Prospect Scale[R].Project OG/211/94FR/UK,Commission of the European Community,Directorate General for Energy,Brussels,1998.
[6]Pepper A S,Dodd T A.Simple kinetic models of petroleum formation,Part II:Oil-gas cracking[J].Marine and Petroleum Geology,1995,12(3):321-340.
[7]Schenk H J,Primio R Di,Horsfield B.The conversion of oil into gas in petroleum reservoirs.Part I:Comparative kinetic investigation of gas generation from crude oils of lacustrine,marine and fluviodeltaic origin by programmed-temperature closed-system pyrolysis[J].Organic Geochemistry,1997,26(7):467-481.
[8]Wang Yunpeng,Wang Zhaoyun,Zhao Changyi,et al.Kinetics of hydrocarbon gas generation from marine kerogen and oil:Implications for the origin of natural gases in the Hetianhe gasfield,Tarim Basin,NW China[J].Journal of Petroleum Geology,2007,30(4):339-356.
[9]Wang Yunpeng,Zhang Shuichang,Wang Feiyu,et al.Thermal cracking history by laboratory kinetics simulation of Paleozoic oil in eastern Tarim Basin,NW China,implications for the occurrence of residual oil reservoirs[J].Organic Geochemistry,2006,36(12):1803-1815.
[10]Tian Hui,Wang Zhaoming,Xiao Zhongyao,et al.Oil-cracking into gases:Kinetic modeling and geological significance[J].Chinese Science Bulletin,2006,51(22):2673-2770.[田辉,王招明,肖中尧,等.原油裂解成气动力学模拟及其意义[J].科学通报,2006,51(15):1821-1827.]
[11]Li Xianqing,Yang Yunfeng,Tian Hui,et al.Study on kinetic parameters of crude oil cracking gas and its application[J].Acta Sedimentologica Sinica,2012,30(6):1156-1164.[李贤庆,仰云峰,田辉,等.原油裂解成气动力学参数及其应用研究[J].沉积学报,2012,30(6):1156-1164.]
[12]Li Xianqing,Yang Yunfeng,Tian Hui,et al.Kinetics of natural gas generation of Mandong 1 gas pool in Tarim Basin[J].Journal of Oil and Gas Technology,2010,32(5):49-55.[李贤庆,仰云峰,田辉,等.塔里木盆地满东1气藏天然气生成动力学研究[J].石油天然气学报,2010,32(5):49-55.]
[13]He Kun,Zhang Shuichang,Mi Jingkui.Research on the kinetics and controlling factors for oil cracking[J].Natural Gas Geoscience,2011,22(2):211-218.[何坤,张水昌,米敬奎.原油裂解的动力学及控制因素研究[J].天然气地球科学,2011,22(2):211-218.]
[14]Zhu Guangyou,Yang Haijun,Su Jin,et al.True exploration potential of marine oils in the Tarim Basin[J].Acta Petrologica Sinica,2012,28(3):1333-1347.[朱光有,杨海军,苏劲,等.塔里木盆地海相石油的真实勘探潜力[J].岩石学报,2012,28(3):1333-1347.]
[15]Fabuss B M,Smith J O,Satterfield C N.Thermal cracking of pure saturated hydrocarbos[C]//McKetta J J.Advances in Petroleum Chemistry and Refining.New York:Interscience,1964:157-201.
[16]Behar F,Vandenbroucke M.Experimental determintation of the rate constants of the nC25 thermal cracking at 120,400 and 800 bar:Implications for high pressure/high temperature prospect[J].Energy & Fuel,1996,10(4):932-940.
[17]Jackson K J,BurnhamA K,Braun R L,et al.Temperature and pressure dependence of n-hexadecane cracking[J].Organic Geochemistry,1995,23(10):941-953.
[18]Al Darouich T,Behar F,Largeau C.Pressure effect on the thermal cracking of light aromatic fraction of Safaniya crude oil-Implications for deep prospects[J].Organic Geochemistry,2006,37(9):1155-1169.
[19]Behar F,Budzinski H,Vandenbroucke M,et al.Methane generation from oil cracking of 9-methylphenanthrene cracking and comparison with other pure compounds and oil fractions[J].Energy & Fuel,1999,13(2):471-481.
[20]Datriguelongue C,Behar F,Budzinski H,et al.Thermal stability of dibenzothiophene in closed system pyrolysis:Experimental study and kinetic modeling[J].Organic Geochemistry,2006,37(1):98-116.
[21]Kuo L C, Michael G R.A multicomponent oil-cracking kinetics model for modeling preservation and composition of reservoir[J].Organic Geochemistry,1994,21(8/9):911-925.
[22]Domine F,Dessort D,Brevart O.Towards a new method of geochemical kineticmodeling:Implication for the stability of crude oils[J].Organic Geochemistry,1998,28(9/10):597-612.
[23]Donime F,Bounaceur R,Scacchi G,et al.Up to what temperature is petroleum stable? New insights from a 5200 free radical reactions model[J].Organic Geochemistry,2002,33(12):1487-1499.
[24]Tian Hui,Xiao Xianming,Li Xianqing,et al.Comparison of gas generation and carbon isotope fractionation of methane from marine kerogen- and crude oil-cracking gases[J].Geochimica,2007,36(1):71-77.[田辉,肖贤明,李贤庆,等.海相干酪根与原油裂解气甲烷生成及碳同位素分馏的差异研究[J].地球化学,2007,36(1):71-77.]
[25]Wang Yunpeng,Tian Jin.Review of oil cracked gas formation,identification and migration[J].Natural Gas Geoscience,2007,18(2):235-244.[王云鹏,田静.原油裂解气的形成、鉴别与运移研究综述[J].天然气地球科学,2007,18(2):235-244.]
[26]Geng Xinhua,Geng Ansong.Kinetic simulating experiment on secondary thermal cracking of the bitumen generated from marine carbonate rock[J].Natural Gas Geoscience,2008,19(5):695-670.[耿新华,耿安松.源自海相碳酸盐岩烃源岩原油裂解成气的动力学研究[J],天然气地球科学,2008,19(5):695-700.]
[27]Waples D W.The kinetics of in-reservoir oil destruction and gas formation:constraints from experimental and empirical data,and from thermodynamics[J].Organic Geochemistry,2000,31(6):553-575.
[28]Claypool G E,Mancini E A.Geochemical relationships of petroleum in Mesozoic reservoirs to carbonate source rocks of Jurassic Smackover Formation,southwestern Alabama[J].AAPG Bulletin,1989,73(7):904-924.
[29]Qu Jiayan,Wang Zhenping,Fu Xiaotai,et al.The chemical kinetic study of thermo-destruction of oil pool[J].Hebei University Technology,2003,32(4):35-40.[曲佳燕,王振平,付晓泰,等.油藏热破坏的化学动力学定量研究[J].河北工业大学学报,2003,32(4):35-40.]
[30]Behar F,Kressmann S,Rudkiewiez J L,et al.Experimental simulation in a confined system and kinetic modeling of kerogen and oil cracking[J].Organic Geochemistry,1992,19(1-3):173-189.
[31]Horsfield B,Schenk H J,Mills N,et al.Closed-system programmed-temperature pyrolysis for simulating the conversion of oil to gas in a deep petroleum reservoir[J].Organic Geochemistry,1992,19(1-3):191-204.
[32]Hill R J,Tang Tongchun,Kaplan I R.Insights into oil cracking based on laboratory experiments[J].Organic Geochemistry,2003,34(12):1651-1672.
[33]McCain Jr,W D,Bridges B.Volatile oils and retrograde gas-What′s the difference[J].Petroleum Engineer International,1994,66(1):35-36.
[34]Hunt J M.Petroleum Geochemistry and Geology[M].2nd ed.New York:W H Freeman and Company,1996:35-66.
[35]Wang Zhaoming,Xie Huiwen,Chen Yongquan,et al.Discovery and exploration of Cambrian subsalt dolomite original hydrocarbon reservoir at Zhongshen-1 well in Tarim Basin[J].China Petroleum Exploration,2014,19(2):1-13.[王招明,谢会文,陈永权,等.塔里木盆地中深1井寒武系盐下白云岩原生油气藏的发现与勘探意义[J].中国石油勘探,2014,19(2):1-13.]
[36]Wang Feiyu,Zhang Shuichang,Zhang Baoming,et al.Maturity and its history of Cambrian marine source rocks in the Tarim Basin[J].Geochimica,2003,32(5):461-468.[王飞宇,张水昌,张宝明,等.塔里木盆地寒武系海相烃源岩有机质成熟度及演化史[J].地球化学,2003,32(5):461-468.]

[1] 张荣虎,王珂,王俊鹏,孙雄伟,李君,杨学君,周露. 塔里木盆地库车坳陷克深构造带克深8区块裂缝性低孔砂岩储层地质模型[J]. 天然气地球科学, 2018, 29(9): 1264-1273.
[2] 王清龙,林畅松,李浩,韩剑发,孙彦达,何海全. 塔里木盆地西北缘中下奥陶统碳酸盐岩沉积微相特征及演化[J]. 天然气地球科学, 2018, 29(9): 1274-1288.
[3] 周波,曹颖辉,齐井顺,黄世伟,刘策,贾进华,陈秀艳. 塔里木盆地古城地区下奥陶统储层发育机制[J]. 天然气地球科学, 2018, 29(6): 773-783.
[4] 朱光有,曹颖辉,闫磊,杨海军,孙崇浩,张志遥,李婷婷,陈永权. 塔里木盆地8 000m以深超深层海相油气勘探潜力与方向[J]. 天然气地球科学, 2018, 29(6): 755-772.
[5] 王珊,曹颖辉,杜德道,王石,李洪辉,董洪奎,严威,白莹. 塔里木盆地柯坪—巴楚地区肖尔布拉克组储层特征与主控因素[J]. 天然气地球科学, 2018, 29(6): 784-795.
[6] 曹颖辉,李洪辉,闫磊,王洪江,张君龙,杨敏,赵一民. 塔里木盆地满西地区寒武系台缘带分段演化特征及其对生储盖组合的影响[J]. 天然气地球科学, 2018, 29(6): 796-806.
[7] 闫磊,李洪辉,曹颖辉,杨敏,赵一民. 塔里木盆地满西地区寒武系台缘带演化及其分段特征[J]. 天然气地球科学, 2018, 29(6): 807-816.
[8] 杨敏,赵一民,闫磊,李洪辉,张欣欣,徐振平,罗浩渝. 塔里木盆地东秋里塔格构造带构造特征及其油气地质意义[J]. 天然气地球科学, 2018, 29(6): 826-833.
[9] 陈斐然,张义杰,朱光有,张宝收,卢玉红,张志遥. 塔里木盆地台盆区深层天然气地球化学特征及成藏演化[J]. 天然气地球科学, 2018, 29(6): 880-891.
[10] 黄少英, 杨文静, 卢玉红, 张科, 赵青, 凡闪. 塔里木盆地天然气地质条件、资源潜力及勘探方向[J]. 天然气地球科学, 2018, 29(10): 1497-1505.
[11] 沈安江,付小东,张友,郑兴平,刘伟,邵冠铭,曹彦清. 塔里木盆地塔东地区震旦系—下古生界碳酸盐岩油气生储条件与勘探领域[J]. 天然气地球科学, 2018, 29(1): 1-16.
[12] 陈燕燕,胡素云,李建忠,王铜山, 陶小晚. 原油裂解过程中组分演化模型及金刚烷类化合物的地球化学特征[J]. 天然气地球科学, 2018, 29(1): 114-121.
[13] 任宇泽,林畅松,高志勇,刘景彦,宋宁宁. 塔里木盆地西南坳陷白垩系层序地层与沉积充填演化[J]. 天然气地球科学, 2017, 28(9): 1298-1311.
[14] 陈双,黄海平,张博原,谢增业. 原油及源内残余沥青裂解成气差异及地质意义[J]. 天然气地球科学, 2017, 28(9): 1375-1384.
[15] 张建勇,倪新峰,吴兴宁,李文正,郝毅,陈娅娜,吕学菊,谷明峰,田瀚,朱茂. 中国主要克拉通盆地深层白云岩优质储层发育主控因素及分布[J]. 天然气地球科学, 2017, 28(8): 1165-1175.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!