天然气地球科学

• 气田开发 • 上一篇    

火山岩气藏压裂水平井产能预测新方法

王志平,冉启全,童敏,王春明   

  1. 中国石油勘探开发研究院,北京 100083
  • 收稿日期:2013-12-24 修回日期:2014-05-17 出版日期:2014-11-10 发布日期:2014-11-10
  • 作者简介:王志平(1981-),女,黑龙江佳木斯人,博士后,主要从事超低渗透、致密油气藏开发及渗流力学理论方面的研究. E-mail:wangzhiping1981@126.com.
  • 基金资助:
    国家高技术研究发展计划(“863”计划)“致密砂岩油气藏数值模拟技术与软件”(编号:2013AA064902)|中国石油勘探开发研究院院级项目(编号:2012Y-043|2012Y-042)联合资助.

New Forecasting Method of Fractured Horizontal Well Productivity in Volcanic Gas Reservoirs

WANG Zhi-ping,RAN Qi-quan,TONG Min,WANG Chun-ming   

  1. PetroChina Research Institute of Petroleum Exploration & Development,Beijing 100083,China
  • Received:2013-12-24 Revised:2014-05-17 Online:2014-11-10 Published:2014-11-10

摘要: 火山岩气藏发育多尺度孔、洞、缝介质,压裂水平井投产具有多重介质接力排供气与非线性渗流的特征。引入新的拟压力函数,以等值渗流阻力法及叠加原理为基础,综合考虑气体滑脱效应、启动压力梯度、应力敏感效应及裂缝内紊流效应,构建了火山岩气藏水平井压裂多条横向裂缝相互干扰的产能预测新方法。结果表明:在气井生产过程中,近井筒附近,裂缝内需考虑紊流效应影响,启动压力梯度对气井产能影响最大,其次是应力敏感效应与紊流效应,滑脱效应影响最小|随着水平井段长度减小,裂缝条数增加,裂缝间干扰越严重,水平井段长度与裂缝条数存在一最佳匹配关系|随着裂缝半长增加,气井产量增大|裂缝导流能力变化对气井产量影响最明显,导流能力越大,气井累计产量越高,裂缝导流能力增加到一定程度时,气井产量随着导流能力增加幅度减小。

关键词: 火山岩气藏, 压裂水平井, 启动压力梯度, 应力敏感, 紊流效应, 裂缝干扰

Abstract: With multi-scale pores and cracks,fractured horizontal well in volcanic gas reservoirs demonstrates the features of relay gas production among multiple media and complex nonlinear flow.Based on the equivalent flowing resistance method and superposition principle,a new productivity forecasting method for fractured horizontal well with multi transverse fractures considering interference in volcanic gas reservoirs is established on a new pseudo-pressure function,with the consideration of comprehensive effect of gas slippage effect,starting pressure gradient,stress sensitivity effect and turbulence effect in fractures.The simulation results show that during the production process of fractured open-hole horizontal well,the turbulence effect in fractures around the well hole needs consideration,and the starting pressure gradient has the most remarkable impact on gas well productivity,followed by pressure-sensitive effect and turbulence effect,and the slippage effect has the smallest influence.The longer the length of horizontal well and the more the number of fractures,the stronger the interference of multi fractures on gas production.There is an optimum relationship of the length of horizontal well and the number of fractures.Gas well production increases as the fracture half-length and fracture conductivity capacity increase.The most obvious influencing factor of gas well production is fracture conductivity capacity.

Key words: Volcanic gas reservoir, Fractured horizontal well, Starting pressure gradient, Stress sensitivity, Turbulence effect, Multi fractures interference

中图分类号: 

  • TE347
[1]Dong Jiaxin,Tong Min,Ran Bo,et al.Nonlinear percolation mechanism in different storage-percolation modes in volcanic gas reservoir[J].Petroleum Exploration and Development,2013,40(3):346-351.[董家辛,童敏,冉博,等.火山岩气藏不同储渗模式下的非线性渗流机理[J].石油勘探与开发,2013,40(3):346-351.]
[2]He Xuewen,Yang Shenglai,Tang Jia.Slippage effect and threshold pressure gradient of deep volcanic reservoir[J].Special Oil & Gas Reservoirs,2010,17(5):100-102.[何学文,杨胜来,唐嘉.深层火山岩油气藏滑脱效应及启动压力梯度研究[J].特种油气藏,2010,17(5):100-102.]
[3]Xiong Jian,Qiu Tao,Guo Ping,et al.Productionevaluation of fractured wells in low permeability reservoirs with nonlinear flow[J].Petroleum Driling Techniques,2012,40(3):92-96.[熊健,邱桃,郭平,等.非线性渗流下低渗气藏压裂井产能评价[J].石油钻探技术,2012,40(3):92-96.]
[4]Xie Qingge,Liu Zhibin,Liu Daojie,et al.Modified deliverability equation of low percolation gas reservoir[J].Journal of Chongqing University of Science and Technology:Natural Science Edition,2012,14(3):68-70.[解庆阁,刘志斌,刘道杰,等.低渗透气藏产能方程的改进[J].重庆科技学院学报:自然科学版,2012,14(3):68-70.]
[5]Zhang Deliang,Zhang Liehui,Zhao Yulong,et al.Study on steady productivity of fractured horizontal well in low permeability gas reservoir[J].Petroleum Geology and Recovery Efficiency,2013,20(3):107-110.[张德良,张烈辉,赵玉龙,等.低渗透气藏多级压裂水平井稳态产能模型[J].油气地质与采收率,2013,20(3):107-110.]
[6]Wang Junlei,Jia Ailin,He Dongbo,et al.Rate decline of multiple fractured horizontal well and influence factors on productivity in tight gas reservoir[J].Natural Gas Geoscience,2014,25(2):278-285.[王军磊,贾爱林,何东博,等.致密气藏分段压裂水平井产量递减规律及影响因素[J].天然气地球科学,2014,25(2):278-285.]
[7]Hu Junkun,Li Xiaoping,Xiao Qiang,et al.A new method of using dynamic data to determine deliverability equation of gas well[J].Natural Gas Geoscience,2013,24(5):1027-1031.[胡俊坤,李晓平,肖强,等.利用生产动态资料确定气井产能方程新方法[J].天然气地球科学,2013,24(5):1027-1031.]
[8]Xu Yongchun,Wang Shaojun.Productivity characteristics of volcano gas reservoir[J].Science & Technology Vision,2012,(8):159-159,175.[徐永春,王少军.火山岩气藏产能特征[J].科技视界,2012,(8):159-159,175.]
[9]Yuan Shiyi,Ran Qiquan,Xu Zhengshun,et al.Strategy of high-efficiency development for volcanic gas reservoir[J].Acta Petrolei Sinica,2007,28(1):73-77.[袁士义,冉启全,徐正顺,等.火山岩气藏高效开发策略研究[J].石油学报,2007,28(1):73-77.]
[10]Wang Jinghong,Zou Caineng,Jin Jiuqiang,et al.Characteristics and controlling factors of fractures in igneous rock reservoir[J].Petroleum Exploration and Development,2011,38(6):708-715.[王京红,邹才能,靳久强,等.火成岩储集层裂缝特征及成缝控制因素[J].石油勘探与开发,2011,38(6):708-715.]
[11]Wang Ziming,Yuan Yingzhong,Pu Haiyang,et al.NumericalSimulation Technology of Equivalent Medium in Carbonate Reservoir[M].Beijing:Petroleum Industry Press,2012:134.[王自明,袁迎中,蒲海洋,等.碳酸盐岩油气藏等效介质数值模拟技术[M].北京:石油工业出版社,2012:134.]
[12]Tian Yudong,Li Xiangfang,Cao Baojun,et al.Simple analysis on percolation characteristics of volcanic gas reservoir[J].Fault-Block Oil & Gas Field,2009,16(6):43-45.[田玉栋,李相方,曹宝军,等.火山岩气藏储层渗流特征浅析[J].断块油气田,2009,16(6):43-45.]
[13]Wang Zhiping,Zhu Weiyao,Yue Ming,et al.A method to predict the production of fractured horizontal wells in low/ultralow permeability reservoir[J].Journal of  University of Science and Technology Beijing,2012,34(7):750-754.[王志平,朱维耀,岳明,等.低、特低渗透油藏压裂水平井产能计算方法[J].北京科技大学学报,2012,34(7):750-754.]
[14]Agodi S Ezeudembah,Dranchuk P M.Flow Mechanism of Forchheimer′s Cubic Equation in High-Velocity Radial Gas Flow Through Porous Media[C].SPE 10979,1982.
[15]Du Xinlong,Kang Yili,You Lijun,et al.Controlling fractors of stress sensitivity in low-permeability reservoir[J].Natural Gas Geoscience,2010,21(2):295-299.[杜新龙,康毅力,游利军,等.低渗透储层应力敏感性控制因素研究[J].天然气地球科学,2010,21(2):295-299.]
[16]Yang Zhengming,Peng Caizhen,Huo Lingjing,et al.Experiment study on stress sensitivity for volcanic gas reservoir[J].Natural Gas Exploration and Development,2011,34(1):29-31.[杨正明,彭彩珍,霍凌静,等.火山岩气藏应力敏感性实验研究[J].天然气勘探与开发,2011,34(1):29-31.]
[17]Liu Zhidi,Miao Fuquan,Luo Xiaofang,et al.Experiment of stress sensitivity for igneous fractured reservoir[J].Natural Gas Geoscience,2012,23(2):208-212.[刘之的,苗福全,罗晓芳,等.火山岩裂缝型储层应力敏感性实验研究[J].天然气地球科学,2012,23(2):208-212.]
[18]Lorenz J C.Stress-sensitive reservoir[J].Journal of Petroleum Technology,1999,51(1):61-63.
[19]Zhu Guangya,Liu Xiangui,Li Shutie.Astudy of slippage effect of gas percolation in low permeability gas pool[J].Natural Gas Industry,2007,27(5):44-47.[朱光亚,刘先贵,李树铁,等.低渗气藏气体渗流滑脱效应影响研究[J].天然气工业,2007,27(5):44-47.]
[20]Chen Daixun.Gas slippage phenomenon and change of permeability when gas flows in tight porous media[J].Acta Mechanica Sinica,2002,34(1):96-100.[陈代珣.渗流气体滑脱现象与渗透率变化的关系[J].力学学报,2002,34(1):96-100.]
[21]Lai Fengpeng,Li Zhiping,Li Guangtao,et al.Single well numerical simulation under complicated conditions in volcanic gas reservoir[J].Natural Gas Geoscience,2012,23(3):577-583.[赖枫鹏,李治平,李光涛,等.复杂条件下火山岩气藏单井数值模拟研究[J].天然气地球科学,2012,23(3):577-583.]
[22]Gou Honggang,Hao Yuhong,Wang Dongxu,et al.A Study for calculating influenced radius of gas well[J].Well Testing,2005,14(3):5-7.[苟宏刚,郝玉鸿,王东旭,等.气井影响半径计算新方法研究[J].油气井测试,2005,14(3):5-7.]
 
[1] 位云生, 贾爱林, 郭智, 孟德伟, 王国亭. 致密砂岩气藏多段压裂水平井优化部署[J]. 天然气地球科学, 2019, 30(6): 919-924.
[2] 罗红文, 李海涛, 刘会斌, 孙涛, 卢宇, 李颖. 低渗气藏两相渗流压裂水平井温度剖面预测[J]. 天然气地球科学, 2019, 30(3): 389-399.
[3] 谢维扬, 刘旭宁, 吴建发, , 张鉴, 吴天鹏, 陈满. 页岩气水平井组产量递减特征及动态监测[J]. 天然气地球科学, 2019, 30(2): 257-265.
[4] 姜瑞忠, 原建伟, 崔永正, 张伟, 张福蕾, 张海涛, 毛埝宇. 基于TPHM的页岩气藏多级压裂水平井产能分析[J]. 天然气地球科学, 2019, 30(1): 95-101.
[5] 程鸣, 傅雪海, 张苗, 程维平, 渠丽珍. 沁水盆地古县区块煤系“三气”储层覆压孔渗实验对比研究[J]. 天然气地球科学, 2018, 29(8): 1163-1171.
[6] 曾凡辉, 王小魏, 郭建春, 郑继刚, 李亚州, 向建华. 基于连续拟稳定法的页岩气体积压裂水平井产量计算[J]. 天然气地球科学, 2018, 29(7): 1051-1059.
[7] 吕志凯, 贾爱林, 唐海发, 刘群明, 王泽龙. 大型致密砂岩气藏水平井产能评价与新认识[J]. 天然气地球科学, 2018, 29(6): 873-879.
[8] 史文洋,姚约东,程时清,石志良,高敏. 裂缝性低渗透碳酸盐岩储层酸压改造油井动态压力特征[J]. 天然气地球科学, 2018, 29(4): 586-596.
[9] 孟凡坤,雷群,徐伟,何东博,闫海军,邓惠. 应力敏感碳酸盐岩复合气藏生产动态特征分析[J]. 天然气地球科学, 2018, 29(3): 429-436.
[10] 卢文涛,李继庆,郑爱维,梁榜,张谦,杨文新. 涪陵页岩气田定产生产分段压裂水平井井底流压预测方法[J]. 天然气地球科学, 2018, 29(3): 437-442.
[11] 石新朴, 覃建强, 丁艳雪, 杨丹, 史全党, 胡清雄, 李波, 齐洪岩, 张吉辉, 孙德强, 赵振, 饶远, 习成威. 准噶尔盆地滴南凸起火山岩气藏成藏主控因素与成藏模式[J]. 天然气地球科学, 2018, 29(12): 1706-1714.
[12] 宋文礼, 董家辛, 孙圆辉, 黄玉欣, 王军宇. 松辽盆地长岭火山岩气藏气井产水模式及影响因素[J]. 天然气地球科学, 2018, 29(12): 1788-1794.
[13] 王琰琛, 陈军, 邓亚, 肖聪. 页岩气藏体积压裂水平井渗流模型[J]. 天然气地球科学, 2018, 29(12): 1795-1802.
[14] 王颖, 邓守伟, 范晶, 邹晓品, 杨静. 松辽盆地南部重点断陷天然气地质条件、资源潜力及勘探方向[J]. 天然气地球科学, 2018, 29(10): 1455-1464.
[15] 杨浩珑,向祖平,袁迎中,李龙. 低渗气藏压裂气井稳态产能计算新方法[J]. 天然气地球科学, 2018, 29(1): 151-157.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵应成,周晓峰,王崇孝,王满福,郭娟娟 . 酒西盆地青西油田白垩系泥云岩裂缝油藏特征和裂缝形成的控制因素[J]. 天然气地球科学, 2005, 16(1): 12 -15 .
[2] 倪金龙;夏斌;. 济阳坳陷坡折带组合类型及石油地质意义[J]. 天然气地球科学, 2006, 17(1): 64 -68 .
[3] 唐友军,文志刚,窦立荣,徐佑德. 一种估算原油成熟度的新方法[J]. 天然气地球科学, 2006, 17(2): 160 -162 .
[4] 朱志敏;沈冰;闫剑飞;. 阜新盆地无机成因气探讨[J]. 天然气地球科学, 2006, 17(3): 418 -421 .
[5] 倪金龙;吕宝凤;夏斌;. 渤海湾盆地八面河缓坡带断裂系统及其对孔店组油气成藏的影响[J]. 天然气地球科学, 2006, 17(3): 370 -373 .
[6] 李广之;胡斌;袁子艳;邓天龙;. 轻烃的吸附与解吸模型[J]. 天然气地球科学, 2006, 17(4): 552 -558 .
[7] 郑有恒,黄海平,文志刚,陈永峤,朱建辉. 根据原油的含氮化合物判断东营凹陷大芦湖油田油气运移方向[J]. 天然气地球科学, 2004, 15(6): 650 -651 .
[8] 刘宏,蔡正旗,郑超, 张荣义. 大池干井构造带嘉二~2储层特征及有利区预测[J]. 天然气地球科学, 2004, 15(6): 614 -618 .
[9] 杨满平,李允. 考虑储层初始有效应力的岩石应力敏感性分析[J]. 天然气地球科学, 2004, 15(6): 601 -603 .
[10] 田继军, 陈振林, 王雪莲, 田建锋. 伏龙泉气田成藏规律分析[J]. 天然气地球科学, 2004, 15(5): 508 -810 .