天然气地球科学

• 天然气开发 • 上一篇    下一篇

气水过渡带内底水凝析气藏数值模拟研究——以吉拉克TⅡ2凝析气藏为例

李世川1,2,黄召庭1,江同文3,牛玉1,阳建平1,成荣红1,谢伟1,汪斌1   

  1. 1.中国石油塔里木油田分公司勘探开发研究院,新疆 库尔勒 841000;
    2.西南石油大学,四川 成都 610500;
    3.中国石油塔里木油田分公司,新疆 库尔勒 841000
  • 收稿日期:2013-12-11 修回日期:2014-05-22 出版日期:2014-11-10 发布日期:2014-11-10
  • 通讯作者: 黄召庭(1984-),男,贵州岑巩人,工程师,硕士,主要从事油气藏工程研究.E-mail:hztcdut@163.com. E-mail:hztcdut@163.com
  • 作者简介:李世川(1966-),男,重庆万州人,高级工程师,在读博士,主要从事气田开发研究. E-mail:tlmlsc@126.com.
  • 基金资助:
    国家科技重大专项“高压气藏安全高效开发技术”(编号:2011ZX05015-001)|中国石油天然气股份有限公司重大专项“高压、超高压气田及凝析气田高效开发技术”(编号:2010E-2103-01)联合资助.

The Numerical Simulation Study of Basal Water Condensate Gas Reservoir in Gas-Water Transition Zone:An Example from TⅡ2 Condensate Gas Reservoir in Jilake Gasfield

LI Shi-chuan1,2,HUANG Zhao-ting1,JIANG Tong-wen3,NIU Yu1,YANG Jian-ping1,CHENG Rong-hong1,XIE Wei1,WANG Bin1   

  1. 1.Exploration and Development Research Institute,PetroChina Tarim Oilfield Company,Korla 841000,China| 2.Southwest Petroleum University,Chengdu 610500,China| 3.PetroChina Tarim Oilfield Company,Korla 841000,China)
  • Received:2013-12-11 Revised:2014-05-22 Online:2014-11-10 Published:2014-11-10

摘要: 吉拉克TⅡ2底水凝析气藏构造幅度低,非均质性强,气藏顶部存在低电阻气层段,气水关系复杂。结合气藏地质和生产特征,对压汞资料分类评价并归一化处理计算气水过渡带高度,结果表明该气藏总体处于气水过渡带内,为气水过渡带内的底水凝析气藏。在对比各种建立气藏原始饱和度方法的基础上,采用毛细管压力法建立该气藏原始饱和度场并进行数值模拟研究。利用2种方法实现了产水气井的精细模拟:一是考虑饱和顺序对相对渗透率曲线影响,实现主要受可动水影响,初期见水且低产稳产水气井的精细模拟|二是采用局部网格加密准确描述反凝析与底水锥进对近井地带影响,实现主要受底水影响,见水后产水量逐渐增大的气井精细模拟。研究结果表明,这些方法对复杂凝析气藏模拟具有很好的效果,对同类气藏模拟具有重要的参考作用。

关键词: 吉拉克气田, 气水过渡带, 毛细管压力, 饱和顺序, 局部网格加密, 数值模拟

Abstract: The TⅡ2 basal water condensate gas reservoir in Jilake Gasfield has some characters,i.e.,low amplitude of structure,severe heterogeneity,low resistivity gas horizon in the top of gas reservoir,complex gas-water distribution.Combined with the geology setting and production performance of the gas reservoir,mercury penetration data were classified and handled to calculate the height of gas-water transitional zone,and it is concluded that it is a basal water condensate gas reservoir in gas-water transitional zone.Capillary pressure method was used to establish initial water saturation and to simulate gas reservoir.Two methods were used to delicately simulate gas wells which are producing water.Some wells with low and sustained producing water which were mainly affected by movable water were preferably simulated by considering saturation procedure for relative permeability curve.Some wells which were mainly affected by basal water were finely simulated by LGR to accurately describe retrograde condensation and bottom water coning in near wellbore.The findings indicate that these methods take advantage of simulating complex condensate gas reservoir,so these methods can be applied to other gas reservoirs.

Key words: Jilake Gasfield, Gas-water transitional zone, Capillary pressure, Saturation procedure, Local grid refinement, Numerical simulation

中图分类号: 

  • TE34

[1]Wei Yunsheng,Shao Hui,Jia Ailin,et al.Gas water distribution model and control factors in low permeability high water saturation sandstone gas reservoirs[J].Natural Gas Geoscience,2009,20(5):822-826.[位云生,邵辉,贾爱林,等.低渗透高含水饱和度砂岩气藏气水分布模式及主控因素研究[J].天然气地球科学,2009,20(5):822-826.]
[2]Hu Yong,Shao Yang,Lu Yongliang,et al.Experimental study on occurrence models of water in pores and the influencing to the development of tight gas reservoir[J].Natural Gas Geoscience,2011,22(1):176-181.[胡勇,邵阳,陆永亮,等.低渗气藏储层孔隙中水的赋存模式及对气藏开发的影响[J].天然气地球科学,2011,22(1):176-181.]
[3]Hao Guoli,Liu Guangdi,Xie Zengye,et al.Gas-water distributed pattern in Xujiahe Formation tight gas sandstone reservoir and influential factor in central Sichuan Basin[J].Natural Gas Geoscience,2010,21(3):427-434.[郝国丽,柳广弟,谢增业,等.川中地区须家河组致密砂岩气藏气水分布模式及影响因素分析[J].天然气地球科学,2010,21(3):427-434.]
[4]Zhao Jun,Song Fan.Genetic analysis and evaluation of low resistivity oil formation in Tarim Basin[J].Petroleum Exploration and Development,2004,31(6):69-71.[赵军,宋帆.塔里木盆地低电阻率油层成因分析与评价[J].石油勘探与开发,2004,31(6):69-71.]
[5]Mao Zhiqiang,Gong Fuhua,Liu Changyu,et al.Experimental study on the gensis of low resistivity pay zone in north region of Tarim Basin[J].Well Logging Technology,1999,23(4):243-248.[毛志强,龚富华,刘昌玉,等.塔里木盆地油气层低阻成因实验研究[J].测井技术,1999,23(4):243-248.]
[6]You Yuchun,Liu Weixing,Tan Zhenhua,et al.Genesis of low-resistivity reservoirs in Qintong Sag,Subei Basin[J].Natural Gas Geoscience,2009,20(6):941-944.[游瑜春,刘伟兴,谭振华,等.苏北盆地溱潼凹陷低阻油气层成因研究[J].天然气地球科学,2009,20(6):941-944.]
[7]Yu Qixiang,Lu Qinghua,Zhu Yonghui.Characteristics and genesis of low resistivity gas reservoir of Cretaceous-Tertiary in southern Tianshan area[J].Natural Gas Geoscience,2011,22(1):108-114.[余琪祥,路清华,朱永辉.天山南区块白垩系—第三系低阻气层特征及成因分析[J].天然气地球科学,2011,22(1):108-114.]
[8]Li Yong,Li Baozhu,Hu Yongle,et al.Water production analysis and reservoir simulation of the Jilake condensate gas field[J].Petroleum Exploration and Development,2010,37(1):89-93.
[李勇,李保柱,胡永乐,等.吉拉克凝析气田单井产水分析及数值模拟[J].石油勘探与开发,2010,37(1):89-93.]
[9]Ran Xinquan,He Jiangchuan.Reservoir Engineering Handbook[M].Beijing:Petroleum Industry Press,2002.[冉新权,何江川.油藏工程手册[M].北京:石油工业出版社,2002.]
[10]Zhang Houhe,Qin Ruibao.Applied Capillary Pressure Curves to Calculate Original Water Saturation Distribution in Triassic Gas Reservoir  in Jilake Oilfield[M].Beijing:Petroleum Industry Press,1992.[张厚和,秦瑞宝.利用毛管压力曲线研究吉拉克气田三叠系凝析气藏含水饱和度之分布[M].北京:石油工业出版社,1992.]
[11]Chen Fuli,Jin Yong,Zhang Shupin,et al.NMR T2 distribution method for evaluating fluid saturation of original hydrocarbon reservoirs:A case form complex gas reservoirs in deep zone volcanics Daqing[J].Natural Gas Geoscience,2007,18(3):412-417.[陈福利,金勇,张淑品,等.用核磁T2谱法评价原始气藏流体饱和度——以大庆深层火山岩复杂气藏为例[J].天然气地球科学,2007,18(3):412-417.]
[12]Li Aifen,Zhang Zhiying,Cui Chuanzhi,et al.Fundamentals of  Petrophysics[M].Dongying:China University of Petroleum Press,2011.[李爱芬,张志英,崔传智,等.油层物理学[M].东营:中国石油大学出版社,2011.]
[13]Zhang Liehui,Feng Peizhen,Liu Yueping,et al.Ration distribution of oil and gas in the process of single well gas-injection[J].Journal of Southwest Petroleum Institute,2000,22(4):52-55.[张烈辉,冯佩真,刘月萍,等.单井注气吞吐过程中油气饱和度分布研究[J].西南石油学院学报,2000,22(4):52-55.]
[14]Sheng Ruyan.Experimental study on residual gas saturation of water-flooded sandstone gas reservoirs[J].Journal of Oil and Gas Technology,2010,32(4):105-107.[JP3][生如岩.水驱砂岩气藏残余气饱和度试验研究[J].石油天然气学报,2010,32(4):105-107.]
[15]Li Shilun,Wang Minghua,He Jiangchuan,et al.Development of Gas Field and Gas Condensate  Field[M].Beijing:Petroleum Industry Press,2004.[李世伦,王鸣华,何江川,等.气田与凝析气田开发[M].北京:石油工业出版社,2004.]
[16]Killough J E.Reservoir simulation with history dependent saturation function[J].Society of Petroleum Engineers Journal,1976,16(2):37-48.
[17]Li Yun.Reservoir Simulation[M].Dongying:China University of Petroleum Press,1998.[李允.油藏模拟[M].东营:石油大学出版社,1998.]
[18]Zhang Feng,Wang Zhensheng,Cheng Yan,et al.Processing methods for relative permeability curves in reservoir numerical simulation[J].Natural Gas Geoscience,2010,21(5):859-862.[张枫,王振升,程岩,等.油藏数值模拟中油水相对渗透率曲线处理方法[J].天然气地球科学,2010,21(5):859-862.]
[19]Zhou Qi,Zhu Xueqian,Liu Chuanxi.The curve and processing of capillary pressure hysteresis and relative permeability hysteresis [J].Oil and Gas Recovery Technology,1999,6(3):47-50.[周琦,朱学谦,刘传喜.毛细管力滞后曲线和相渗透率滞后曲线及处理[J].油气采收率技术,1999,6(3):47-50.]
[20]Liu Guangtian,Li Baozhen.Local grid coarsening and refinement technique in the numerical simulation of large bottom water reservoirs[J].Science Technology and Engineering,2012,13(12):3207-3210.[刘广天,李保振.局部网格粗化与加密技术在大底水油藏数值模拟中的应用[J].科学技术与工程,2012,13(12):3207-3210.][HJ1.5mm]

[1] 位云生, 贾爱林, 郭智, 孟德伟, 王国亭. 致密砂岩气藏多段压裂水平井优化部署[J]. 天然气地球科学, 2019, 30(6): 919-924.
[2] 张涛,李相方,王永辉,石军太,杨立峰,孙政,杨剑,张增华. 页岩储层特殊性质对压裂液返排率和产能的影响[J]. 天然气地球科学, 2017, 28(6): 828-838.
[3] 刘卫群, 王冬妮, 苏强. 基于页岩储层各向异性的双重介质模型和渗流模拟[J]. 天然气地球科学, 2016, 27(8): 1374-1379.
[4] 任东, 董家辛, 王志平, 时文. 火山岩气藏气井生产动态规律及预测方法[J]. 天然气地球科学, 2016, 27(11): 2037-2042.
[5] 赵金洲,周莲莲,马建军,李勇明. 考虑解吸扩散的页岩气藏气水两相压裂数值模拟[J]. 天然气地球科学, 2015, 26(9): 1640-1645.
[6] 邵昭媛,宁宁,刘华勋,高树生,赵芳. 压裂水平井生产动态数值模拟研究[J]. 天然气地球科学, 2015, 26(4): 737-743.
[7] 高帅,曾联波,马世忠,何永宏,巩磊,赵向原,许文国,唐小梅. 致密砂岩储层不同方向构造裂缝定量预测[J]. 天然气地球科学, 2015, 26(3): 427-434.
[8] 吴红烛,黄志龙,童传新,黄保家,刘平,魏国. 气水过渡带和天然气成藏圈闭闭合度下限问题讨论——以莺歌海盆地高温高压带气藏为例[J]. 天然气地球科学, 2015, 26(12): 2304-2314.
[9] 孙嘉鑫,宁伏龙,郑明明,张凌,刘天乐,周欣,蒋国盛,Chikhotkin V F. 室内沉积物中天然气水合物形成数值模拟研究[J]. 天然气地球科学, 2015, 26(11): 2172-2184.
[10] 王宇,李晓,王金波,郑博,张搏,赵志恒. 水力压裂中的应力阴影效应与数值计算[J]. 天然气地球科学, 2015, 26(10): 1941-1950.
[11] 姜瑞忠,刘明明,徐建春,孙召勃,邢永超. 遗传算法在苏里格气田井位优化中的应用[J]. 天然气地球科学, 2014, 25(10): 1603-1609.
[12] 商琳,戴俊生,贾开富,邹娟,孔越. 碳酸盐岩潜山不同级别构造裂缝分布规律数值模拟——以渤海湾盆地富台油田为例[J]. 天然气地球科学, 2013, 24(6): 1260-1267.
[13] 徐守余,王淑萍. 砂岩储层微观结构分形特征研究——以胜坨油田古近系沙河街组储层为例[J]. 天然气地球科学, 2013, 24(5): 886-893.
[14] 刘乐乐,鲁晓兵,张旭辉. 天然气水合物分解引起多孔介质变形流固耦合研究[J]. 天然气地球科学, 2013, 24(5): 1079-1085.
[15] 李琴,陈程,荀小全. 低渗致密气藏压裂水平井产能预测新方法[J]. 天然气地球科学, 2013, 24(3): 633-638.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 任以发. 微量烃分析在井中化探录井中的应用[J]. 天然气地球科学, 2005, 16(1): 88 -92 .
[2] 郑建京;吉利明;孟仟祥;. 准噶尔盆地天然气地球化学特征及聚气条件的讨论[J]. 天然气地球科学, 2000, 11(4-5): 17 -21 .
[3] 张延敏, . 1996~1999年世界天然气产量[J]. 天然气地球科学, 2000, 11(3): 44 -45 .
[4] 付广;王剑秦. 地壳抬升对油气藏保存条件的影响[J]. 天然气地球科学, 2000, 11(2): 18 -23 .
[5] 王先彬;妥进才;周世新;李振西;张铭杰;闫宏;. 论天然气形成机制与相关地球科学问题[J]. 天然气地球科学, 2006, 17(1): 7 -13 .
[6] 倪金龙;夏斌;. 济阳坳陷坡折带组合类型及石油地质意义[J]. 天然气地球科学, 2006, 17(1): 64 -68 .
[7] 唐友军,文志刚,窦立荣,徐佑德. 一种估算原油成熟度的新方法[J]. 天然气地球科学, 2006, 17(2): 160 -162 .
[8] Cramer B;Faber E;Gerling P;Krooss B M;刘全有(译). 天然气稳定碳同位素反应动力学研究――关于干燥、开放热解实验中的思考[J]. 天然气地球科学, 2002, 13(5-6): 8 -18 .
[9] 荣宁,吴迪,韩易龙,陈文龙,王陶,张波,叶翔. 双台阶水平井在塔里木盆地超深超薄边际油藏开发中的应用及效果评价[J]. 天然气地球科学, 2006, 17(2): 230 -232 .
[10] 郭精义,杨占龙,黄刚,杨立国. 潜江凹陷新农地区沉积微相特征与岩性油气藏[J]. 天然气地球科学, 2006, 17(2): 249 -255 .