天然气地球科学

• 非常规天然气 • 上一篇    下一篇

页岩气离散裂缝网络模型数值模拟方法研究

糜利栋,姜汉桥,李俊键   

  1. 中国石油大学(北京)石油工程教育部重点实验室,北京 102249
  • 收稿日期:2014-01-24 修回日期:2014-03-21 出版日期:2014-11-10 发布日期:2014-11-10
  • 作者简介:糜利栋(1987-),男,山西繁峙人,博士研究生,主要从事油气田开发,油藏数值模拟,非常规油气研究.E-mail:cupmld@gmail.com.
  • 基金资助:
    国家重点技术研究发展计划(973)项目“中国南方海相页岩气高效开发基础研究”(编号:2013CB228005);中国石油大学(北京)科研基金(编号:2462013YJRC012)联合资助.

Investigation of Shale Gas Numerical Simulation Method Based on Discrete Fracture Network Model

MI Li-dong,JIANG Han-qiao,LI Jun-jian   

  1. MOE Key Laboratory of Petroleum Engineering,China University of Petroleum(Beijing),Beijing 102249,China
  • Received:2014-01-24 Revised:2014-03-21 Online:2014-11-10 Published:2014-11-10

摘要: 页岩气开发已经成为当今世界各国的焦点,然而关于页岩气的理论研究还处于起步阶段。目前关于页岩气数值模拟方法的应用大多局限于常规油气藏数值模拟所采用的连续介质模型,但页岩气藏天然裂缝发育,非均质性强,连续介质模型不能准确表征页岩气特有的渗流特征。基于离散裂缝网络模型(DFN),从渗流理论出发,建立页岩气离散裂缝网络渗流数学模型,表征页岩气在干酪根中的扩散效应,孔壁的吸附—解吸附效应,纳米孔隙中的滑脱效应、Knudsen扩散效应以及裂缝内的非达西渗流规律。利用有限差分法求解渗流方程并进行敏感性分析。最终得出:①页岩气不同生产阶段,产气机理不同|②滑脱效应和Knudsen扩散效应对页岩气产能影响较大,而吸附—解吸附效应和干酪根中的扩散效应对延长页岩气稳产期起到关键作用。通过和现有页岩气数值模拟软件CMG(2012版)计算结果对比,该模型在模拟裂缝性页岩气藏时更符合实际情况,为页岩气数值模拟的研究奠定了基础。

关键词: 离散裂缝模型, 吸附—解吸附, Knudsen扩散效应, 滑脱效应, 扩散

Abstract: The theoretical study about the shale gas development is still in infancy although it has become a focus of the world today.Most shale gas numerical simulation methods based on the continuous medium model,which is used for conventional oil and gas reservoir,cannot accurately characterize the shale gas special percolation features.This article introduced a shale gas seepage flow model which is established based on the Discrete Fracture Network (DFN) and the flow mechanisms,which accurately characterizes the diffusion in kerogen,adsorption-desorption on pore wall,gas slippage and Knudsen diffusion in nonporous,and also the non-Darcy flow in fractures.Finite difference method is employed for numerical solution of nonlinear partial differential equations and the preliminary simulation results show that: the slippage and Knudsen diffusion have a great effect on the shale gas production,especially the diffusion in kerogen and adsorption play key roles in extending stable production time in shale gas reservoir|The comparison with the results of CMG (2012 Edition) shows that the DFN model is more consistent with the actual situation in the simulation of fractured shale gas reservoir.

Key words: DFN, Adsorption-desorption, Knudsen diffusion, Slippage effect, Diffusion

中图分类号: 

  • TE132.2
[1]Javadpour F.Nanopores and apparent permeability of gas flow in mudrocks:Shales and siltstone[J].Journal of Canadian Petroleum Technology,2009,48(8):16-19.
[2]Shabro V,Torres C V,Javadpour F.Numerical Simulation of Shale-Gas Production From Pore-Scale Modeling of Slip-Flow,Knudsen Diffusion,and Langmuir Desorption to Reservoir Modeling of Compressible Fluid[C].SPE-144355-MS-P,2011:1-5.
[3]Imad Brohi,Mehran Pooladi-Darvish,Roberto Aguilera.Modeling Fractured Horizontal Wells As Dual Porosity Composite Reservoirs- Application to Tight Gas,Shale Gas and Tight Oil Cases[C].SPE-144057-MS-P,2011:1-18.
[4]Vivek Swami.Shale Gas Reservoir Modeling From Nanopores to Laboratory[C].SPE-163065-STU,2012:1-5.
[5]Vivek Swami,Settari A.Pore Scale Gas Flow Model for Shale Gas Reservoir[C].SPE-155756-MS-P,2012:1-11.
[6]Chen Qiang,Kang Yili,You Lijun,et al.Micro-pore structure of gas shale and its effect on gas mass transfer[J].Natural Gas Geoscience,2013,24(6):1298-1304.[ 陈强,康毅力,游利军,等.页岩微孔结构及其对气体传质方式影响[J].天然气地球科学,2013,24(6):1298-1304.]
[7]Mi Lidong,Jiang Hanqiao,Li Junjian,et al.Mechanism of the gas diffusion in shale reservoirs[J].Petroleum Geology & Oilfield Development in Daqing,2014,33(1):154-159.[ 糜利栋,姜汉桥,李俊键,等.页岩储层气体扩散机理[J].大庆石油地质与开发,2014,33(1):154-159.]
[8]Li Zhifeng,Li Zhiping,Miao Lili,et al.Gas flow characteristics in nanoscale pores of shale gas[J].Natural Gas Geoscience,2013,24(5):1042-1047.[ 李智锋,李治平,苗丽丽,等.页岩气藏纳米孔隙气体渗流特征分析[J].天然气地球科学,2013,24(5):1042-1047.]
[9]Wang Jie,Qin Jianzhong,Rao Dan,et al.Microstructure and simulation experiments of extracted gas capability in different types of shale[J].Natural Gas Geoscience,2013,24(4):652-658.[王杰,秦建中,饶丹,等.不同类型页岩富集烃气能力模拟实验及微观结构特征研究[J].天然气地球科学,2013,24(4):652-658.]
[10]Javadpour F,Fisher D,Unsworth M.Nanoscale gas flow in shale gas sediments[J].Journal of Canadian Petroleum Technology,2007,46(10):55-59.
[11]Shabro V,Torres C V,Sepehrnoori K.Forecasting Gas Production in Organic Shale with the Combined Numerical Simulation of Gas Diffusion in Kerogen,Langmuir Desorption from Kerogen Surfaces,and Advection in Nanopores[C].SPE-159250-MS-P,2012:1-5.
[12]Azom P N,Javadpour F.Dual-Continuum Modeling of Shale and Tight Gas Reservoirs[C].SPE-159584-MS-P,2012:1-8.
[13]McKoy M L,Sams W N.Tight Gas Reservoir Simulation:Modeling Discrete Irregular Strata -Bound Fracture Networks and Network Flow,Including Dynamic Recharge from the Matrix[M].NFflow Development Team,2010:43-59.
[14]Boyle E J,Sams W N.NNFLOW A Reservoir Simulator Incorporating Explicit Fractures[C].SPE-153890-MS-P,2012:1-5.
[15]Yang Shenglai,Wei Junzhi.The Reservoir Physics[M].Beijing:The Petroleum Industry Press,2004:18-22,155-158.[杨胜来,魏俊之.油层物理学[M].北京:石油工业出版,2004:18-22,155-158.]
[16]Ruthven D M.Principles of Adsorption and Adsorption Progress[M].Canada:Wiley-Interscience,1984:86-89.
[17]Gao Hequn,Cao Haihong,Ding Anxu,et al.Isotherm adsorption characteristic of marine and continental shale and its controlling factors[J].Natural Gas Geoscience,2013,24(6):1290-1297.[高和群,曹海虹,丁安徐,等.海相页岩和陆相页岩等温吸附特性及控制因素[J].天然气地球科学,2013,24(6):1290-1297.]
[18]Bird R B,Stewart W E,Lightfoot E N.Transport  Phenomena (2)[M].America:John Wiley & Sons,Inc.,Hoboken,NJ.2007:48-53.
 
[1] 姜瑞忠, 原建伟, 崔永正, 张伟, 张福蕾, 张海涛, 毛埝宇. 基于TPHM的页岩气藏多级压裂水平井产能分析[J]. 天然气地球科学, 2019, 30(1): 95-101.
[2] 杨浩珑,向祖平,袁迎中,李龙. 低渗气藏压裂气井稳态产能计算新方法[J]. 天然气地球科学, 2018, 29(1): 151-157.
[3] 崔亚星,熊伟,胡志明,左罗,高树生. 等温条件下页岩储层视渗透率随压力变化规律研究[J]. 天然气地球科学, 2017, 28(4): 514-520.
[4] 张廷山,何映颉,杨洋,伍坤宇. 有机质纳米孔隙吸附页岩气的分子模拟[J]. 天然气地球科学, 2017, 28(1): 146-155.
[5] 赵金洲,周莲莲,马建军,李勇明. 考虑解吸扩散的页岩气藏气水两相压裂数值模拟[J]. 天然气地球科学, 2015, 26(9): 1640-1645.
[6] 孟召平,刘金融,李国庆. 高演化富有机质页岩和高煤阶煤中甲烷吸附—扩散性能的实验分析[J]. 天然气地球科学, 2015, 26(8): 1499-1506.
[7] 朱维耀,田巍,高英,邓佳,张雪龄,亓倩,马千. 页岩气渗流规律测试条件研究[J]. 天然气地球科学, 2015, 26(6): 1106-1112.
[8] 杨兆中,韩金轩,付蔷,李小刚,张健. 煤储层不同尺寸孔中H2O对CH4解吸扩散的分子模拟研究[J]. 天然气地球科学, 2015, 26(5): 951-957,985.
[9] 任晓霞,李爱芬,王永政,江凯亮,陈明强. 考虑滑脱效应的非稳态气体渗透性实验研究[J]. 天然气地球科学, 2015, 26(4): 733-736.
[10] 刘蜀东,李晓平,张健,张泽贵. 鱼骨状分支水平井气水两相产能分析[J]. 天然气地球科学, 2015, 26(3): 550-555.
[11] 姜瑞忠,滕文超,乔欣,徐建春,孙召勃,郜益华,范海军. 复合页岩气藏压裂水平井压力动态分析[J]. 天然气地球科学, 2015, 26(12): 2336-2342.
[12] 苏玉亮,张琪,张敏,王文东. 页岩气多重复合模型流动规律研究[J]. 天然气地球科学, 2015, 26(12): 2388-2394.
[13] 孙六一,赵靖舟,李军,包洪平,刘宝宪,王红伟,王倩. 鄂尔多斯盆地陇东地区上古生界天然气成藏模式[J]. 天然气地球科学, 2015, 26(11): 2029-2038.
[14] 姜瑞忠,汪洋,贾俊飞,孔垂显. 页岩储层基质和裂缝渗透率新模型研究[J]. 天然气地球科学, 2014, 25(6): 936-939.
[15] 杜殿发,王妍妍,张琼,乔妮,刘洋. 页岩气藏综合渗流模型及压力动态分析[J]. 天然气地球科学, 2014, 25(4): 612-617.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵应成,周晓峰,王崇孝,王满福,郭娟娟 . 酒西盆地青西油田白垩系泥云岩裂缝油藏特征和裂缝形成的控制因素[J]. 天然气地球科学, 2005, 16(1): 12 -15 .
[2] 任以发. 微量烃分析在井中化探录井中的应用[J]. 天然气地球科学, 2005, 16(1): 88 -92 .
[3] 郑建京;吉利明;孟仟祥;. 准噶尔盆地天然气地球化学特征及聚气条件的讨论[J]. 天然气地球科学, 2000, 11(4-5): 17 -21 .
[4] 付广;杨勉;. 盖层发育特征及对油气成藏的作用[J]. 天然气地球科学, 2000, 11(3): 18 -24 .
[5] 张延敏, . 1996~1999年世界天然气产量[J]. 天然气地球科学, 2000, 11(3): 44 -45 .
[6] 付广;王剑秦. 地壳抬升对油气藏保存条件的影响[J]. 天然气地球科学, 2000, 11(2): 18 -23 .
[7] 陈建阳,张志杰,于兴河 . AVO技术在水合物研究中的应用及应注意的问题[J]. 天然气地球科学, 2005, 16(1): 123 -126 .
[8] 王先彬;妥进才;周世新;李振西;张铭杰;闫宏;. 论天然气形成机制与相关地球科学问题[J]. 天然气地球科学, 2006, 17(1): 7 -13 .
[9] 倪金龙;夏斌;. 济阳坳陷坡折带组合类型及石油地质意义[J]. 天然气地球科学, 2006, 17(1): 64 -68 .
[10] 王茹;. 胜坨油田两期成藏地球化学特征及成藏过程分析[J]. 天然气地球科学, 2006, 17(1): 133 -136 .