天然气地球科学

• 天然气开发 • 上一篇    下一篇

低频振动单相不可压缩流体细管流动微观动力学数学模型研究

刘静,蒲春生,林承焰,吴飞鹏   

  1. 1.中国石油大学(华东)石油工程学院,山东 青岛 266580;
    2.中国石油大学(华东)地球科学与技术学院,山东 青岛 266580
  • 收稿日期:2013-10-16 修回日期:2014-01-07 出版日期:2014-10-10 发布日期:2014-10-10
  • 作者简介:刘静(1982-),女,河南商丘人,博士后,主要从事油气藏开发地质学与油气田开发方面的研究. E-mail:liujing4522009@163.com.
  • 基金资助:

    国家科技重大专项大型油气田及煤层气开发“低渗透油藏大功率谐振波—化学驱复合技术研究”(编号:20011ZX05009-004);国家自然科学基金“低渗油藏低频振动辅助表面活性剂复合驱油机理研究”(编号:51274229);国家自然科学基金“延时式可控高能气体压裂技术动力学机理研究”(编号:51104173);
    中国博士后科学基金面上资助“裂缝性特低渗油藏波动辅助凝胶调剖耦合作用机理研究”联合资助.

Mathematical Model of Microscopic Dynamics about Single-Phrase Incompressible Fluid Flows in Thin Tube under Low Frequency Vibration

LIU Jing,PU Chun-sheng,LIN Cheng-yan ,WU Fei-peng   



  1. (1.School of Petroleum Engineering in China University of Petroleum,Qingdao 266580,China;
    2.School of Geosciences in China University of Petroleum,Qingdao 266580,China)
  • Received:2013-10-16 Revised:2014-01-07 Online:2014-10-10 Published:2014-10-10

摘要:

为揭示低频振动对地层以及流体流动规律的影响,鉴于储层孔隙体系结构的复杂性,采用细管多孔介质模型,针对单一细管中的单相不可压缩流体,将低频波对流体流动产生惯性力引入圆管层流的Naver—Stokes(N—S)方程,建立了低频振动条件下单相不可压缩流体在细管中流动的微观动力学模型。该模型采用C—N差分格式,对低频振动条件下单一细管中流体流速以及剪切力分布进行模拟计算和定量分析。结果表明,低频振动条件下圆管中的流速随管径呈抛物线型分布,随时间以不振动下速度分布为中心轴线呈周期性变化|黏附层处剪切力也是随时间以不振动下的剪切力为中心轴线呈现周期性变化,当剪切力大于黏附层流动的临界剪切力时,黏附层会部分发生流动。该模型的建立与求解,为进一步揭示低频振动对地层渗透性微观动力学增效机制提供了重要认识。
 

关键词: 低频振动, 单相不可压缩流体, 渗流速度, 黏附层

Abstract:

In order to discover the effect of low frequency wave on strata and the law of fluid flow,mathematical model of microscopic dynamics about single-phrase incompressible fluid flows in thin tube under low frequency vibration was established,which is based on inertial force that produced from low frequency vibration when fluid motion is induced into N-S equation of tube with laminar.Using this C-N differential format,fluid velocity and shear force distribution in single thin tube were simulated and quantitatively analyzed under low frequency vibration.The results show that fluid flow rate presents a parabolic distribution with diameter and a periodical change that centered on no-vibration fluid velocity distribution with time in single thin tube under low frequency vibration|shear force at adhesion layer also presents a periodical change that centered on no-vibration fluid velocity distribution with time.When the shear force is greater than the critical shear force of the adhesive layer flows,the portions of the adhesive layer will flow.Establishment and solution of the model provide an important understanding for further discovery of the microscopic dynamics synergistic mechanism that low-frequency vibration has on the formation permeability.
 

Key words: Low frequency vibration, Single-phase incompressible fluid, Seepage velocity, Adhesion layer

中图分类号: 

  • TE357
[1]Wang Zhongmao.Vibration Oil Production Technique[M].Beijing:Petroleum Industry Press,2000:59-96.[王仲茂.振动采油技术[M].北京:石油工业出版社,2000:50-96.]
[2]Hu Bozhong.Wave Field Production Technology[M].Beijing:Petroleum Industry Press,1996:50-63.[胡博仲.波场采油技术[M].北京:石油工业出版社,1996:50-63.][ZK)]
[3]Liu Jing,Pu Chunsheng,Zheng Liming ,et al.Experiment research on effects of low frequency vibration wave for crude oil viscosity[J].Science Technology and Engineering,2012,12(27):214-217.[刘静,蒲春生,郑黎明,等.低频振动对原油黏度影响的实验研究[J].科学技术与工程,2012,12(27):214-217.]
[4]Liu Jing,Pu Chunsheng,Liu Tao ,et al.Study on seepage model of pulse fluid in the formation[J].Journal of Xi′an Shiyou University:Natural Science Edition,2011,26(4):46-49.[刘静,蒲春生,刘涛,等.脉冲波作用下地层流体渗流规律研究[J].西安石油大学学报:自然科学版,2011,26(4):46-49.]
[5]Li Ji,Zhang Yan,Zang Hongmei ,et al.A new method of  studying on the law of vibration wave propagating through saturation porous media in vibration production[J].Oil Drilling & Production Technology,2000,22(4):48-51.[李骥,张焱,张红梅,等.振动采油中地层饱和多孔介质波动规律研究的新方法[J].石油钻采工艺,2000,22(4):48-51.]
[6]Zheng Maosheng,Ming Fangfei,Zhu Xiuhong ,et al.Effect of vibration on permeability of rock and stratum[J].Acta Petrol Sinica,2008,29(6):875-879.[郑茂盛,明方飞,朱秀红,等.振动对岩石及地层渗透率的影响[J].石油学报,2008,29(6):875-879.]
[7]Li Ji,Zhang Yan,An Jiuquan ,et al.The effect of vibration field on crude oil seepage flow[J].Oil &Gas Recovery Technology,2000,3(7):46-48.[李骥,张焱,安九泉,等.振动场作用对原油渗流的影响[J].油气采收率技术,2000,3(7):46-48.]
[8]Long Xiaojian,Sun Wei,Wang Ruifei.The calculating research of the influence to casing pipe cement sheath and formation by vibrated water injection[J].Natural Gas Geoscience,2005,16(5):666-669.[龙小健,孙卫,王瑞飞.振动注水对套管、水泥环及地层影响的计算研究[J].天然气地球科学,2005,16(5):666-669.]
[9]Yuan Enxi.Engineering Fluid Mechanics[M].Beijing:Petroleum Industry Press,2007:109-113.[袁恩熙.工程流体力学[M].北京:石油工业出版社,2007:109-113.]
[10]Pu Chunsheng,Wang Bei,Xiao Zengli ,et al.Mathematical model study on porous medium single phase radial flow under dual super posed wave[J].Daqing Petroleum Geology and Exploitation,2008,27(1):97-101.[蒲春生,王蓓,肖曾利,等.二元叠合波条件下多孔介质单相平面径向渗流数学模型研究[J].大庆石油地质与开发,2008,27(1):97-101.]
[11]Zhang Rongjun,Pu Chunsheng,Dong Zhengyuan.Mathematical model for fluid filtration in formation under the condition of vibration[J].Acta Petrol Sinice,2004,25(5):80-83.[张荣军,蒲春生,董正远.振动条件下地层流体渗流的数学模型[J].石油学报,2004,25(5):80-83.]
[12]Zhang Xiuli,Zhang Guiming,Yang Shuhe ,et al.Seimici hydrocarbon detection technique and its application in identication of shallow gas in Dagang Oilfield[J].Natural Gas Geoscience,2013,24(4):815-820.[张秀丽,张桂明,杨树合,等.地震油气检测技术在大港油田浅层气识别中的应用[J].天然气地球科学,2013,24(4):815-820.]
 
[1] 康毅力,豆联栋,游利军,陈强,程秋洋. 富有机质页岩增产改造氧化液浸泡离子溶出行为[J]. 天然气地球科学, 2018, 29(7): 990-996.
[2] 汪道兵,葛洪魁,宇波,文东升,周珺,韩东旭,刘露. 页岩弹性模量非均质性对地应力及其损伤的影响[J]. 天然气地球科学, 2018, 29(5): 632-643.
[3] 翁定为,付海峰,包力庆,胥云, 梁天成,张金. 水平井平面射孔实验研究[J]. 天然气地球科学, 2018, 29(4): 572-578.
[4] 黄禹忠,刁素,栗铁峰,何红梅. 致密砂岩气藏压裂伤害及对策——以川西坳陷ZH构造JS12气藏为例[J]. 天然气地球科学, 2018, 29(4): 579-585.
[5] 史文洋,姚约东,程时清,石志良,高敏. 裂缝性低渗透碳酸盐岩储层酸压改造油井动态压力特征[J]. 天然气地球科学, 2018, 29(4): 586-596.
[6] 田兵,王琪,路仁兵,刘海泉,马晓峰,郝乐伟. 深水水道体系砂岩储层的地球物理综合预测技术及应用[J]. 天然气地球科学, 2017, 28(10): 1593-1600.
[7] 康毅力,白佳佳,游利军. 有机质含量对页岩声波传播特性的影响[J]. 天然气地球科学, 2017, 28(9): 1341-1349.
[8] 郑瑞辉,刘杏,黄军平,张慧敏,赵双丰,张枝焕. 四川盆地通南巴构造带陆相层系气藏的气源与成藏期分析[J]. 天然气地球科学, 2017, 28(9): 1330-1340.
[9] 汪宗欣,吕修祥,钱文文. 寒武系海相碳酸盐岩元素地球化学特征及其油气地质意义——以塔里木盆地柯坪地区肖尔布拉克组为例[J]. 天然气地球科学, 2017, 28(7): 1085-1095.
[10] 郭广山,柳迎红,张苗,吕玉民. 沁水盆地柿庄南区块排采水特征及其对煤层气富集的控制作用[J]. 天然气地球科学, 2017, 28(7): 1115-1125.
[11] 张涛,李相方,王永辉,石军太,杨立峰,孙政,杨剑,张增华. 页岩储层特殊性质对压裂液返排率和产能的影响[J]. 天然气地球科学, 2017, 28(6): 828-838.
[12] 林玉祥,舒永,赵承锦,李夏,张春荣. 沁水盆地含煤地层天然气统筹勘探方法及有利区预测[J]. 天然气地球科学, 2017, 28(5): 744-754.
[13] 朱心健,陈践发,贺礼文,王艺繁,张威,张宝收,张科. 塔里木盆地麦盖提斜坡罗斯2井油气地球化学特征及油气源分析[J]. 天然气地球科学, 2017, 28(4): 566-574.
[14] 张合文,邹洪岚,刘双双,鄢雪梅,梁冲. 碳酸盐岩酸蚀蚓孔双重分形描述方法[J]. 天然气地球科学, 2017, 28(3): 466-472.
[15] 杜书恒,赵晔,庞姗,师永民. 岩石水力压裂微观破裂机制[J]. 天然气地球科学, 2016, 27(12): 2237-2245.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!