天然气地球科学

• 论著 • 上一篇    下一篇

高含水致密砂岩气藏储层与水作用机理

胡勇,李熙喆,卢祥国,焦春艳,王庆生,朱秋林   

  1. 1.东北石油大学,黑龙江 大庆 163318;2.中国石油勘探开发研究院廊坊分院,河北 廊坊 065007; 3.中国石油天然气集团公司天然气成藏与开发重点实验室,河北 廊坊 065007;4.中国石油天然气集团公司生产经营管理部天然气处,北京 100724;  5.青海油田天然气开发公司,青海 格尔木 816099
  • 收稿日期:2013-12-02 修回日期:2014-01-03 出版日期:2014-07-10 发布日期:2014-07-10
  • 作者简介:胡勇(1978-),男,重庆人,高级工程师,博士研究生,主要从事石油天然气开发与实验研究.
  • 基金资助:

    国家科技重大专项“致密砂岩气有效开发评价技术”(编号:2011ZX05013-002);黑龙江省自然科学重点基金项目(编号:ZD201312)联合资助.

The Realization of the Active Mechanism between Formation and Water in Tight Sand Gas Reservoir with High Water Saturation

HU Yong,LI Xi-zhe, LU Xiang-guo,JIAO Chun-yan,WANG Qing-sheng,ZHU Qiu-lin   

  1. 1.Northeast Petroleum University,Daqing 163318,China;2.Research institute of Exploration and Development,PetroChina,Langfang 065007,China;3.The Key Laboratory of Gas Reservoir Formation and Development,PetroChina,Langfang 065007,China;4.China National Petroleum Corporation Production and Operation Management Department, Beijing 100724,China;5.Qinghai Oilfiled Natural Gas Development Company,Geermu 816099,China
  • Received:2013-12-02 Revised:2014-01-03 Online:2014-07-10 Published:2014-07-10

摘要:

我国多数气藏均具有高含水饱和度特征,储层与水作用机理的认识是指导气藏科学开发的一项重要依据。建立了一套长岩心物理模拟实验方法,分类选择储层基质岩心分别在不同含水条件下,采用湿气开展了气藏衰竭开采物理模拟实验研究,得出了衰竭开采过程中不同渗透率储层实验前后含水饱和度变化特征,发现一项重要的开发机理认识,即不同渗透率砂岩储层与水的相互作用机理差异明显:①水在Ⅰ类、Ⅱ类储层(>0.5×10-3μm2)内具有较好的流动性,在生产过程中岩心含水饱和度会下降,水会随气体一起产出,说明这类储层即使本身含水饱和度较高或者有外来水时,水也不会在储层中过多滞留从而对气相渗流造成致命影响;②水在Ⅲ类、Ⅳ类储层(<0.5×10-3μm2)中渗流能力差,如果气藏没有足够大的能量,这类储层岩心的细微孔喉则会对原始孔隙水产生束缚作用,对外来侵入水产生捕集作用,从而导致储层含水饱和度升高,影响气相渗流能力。这一开发机理认识对于指导高含水致密砂岩气藏制订合理工作制度和开发对策具有一定意义。

关键词: 高含水, 致密砂岩气藏, 储层与水, 作用机理, 实验方法

Abstract:

High water saturation in tight sand gas formation is popular in China and the active mechanism between formation and water is very important for development.So we have built long core experimental method and equipment to research it,and cores used in the experiment have been classified into four types. The water saturations before and after experiment have been determined.Based on the result,we get a new and important realization of the active mechanism between formation and water in tight sand gas reservoir.For I and II formations (>0.5×10-3μm2),the water can flow freely,the water saturation declined when the experiment ends,and the gas and water have been produced well.But for the III and IV formations (<0.5×10-3μm2),the result is greatly different.It is difficult for water to flow in the formation and the water might be captured by thin pore and throat and then held by the formation,therefore,water saturation after experiment is higher than before.It will lead to the large decline of gas production,which is bad for gas development.It is one of the most important realization for development of tight sand gas reservoir with high water saturation.

Key words: High water saturation, Tight sand gas reservoir, Formation and water, The active mechanism, Experimental study

中图分类号: 

  • TE37

[1]Hu Wenrui,Bao Jingwei,Hu Bin.Trend and progress in global oil and gas exploration[J].Petroleum Exploration and Development,2013,40(4):409-413.[胡文瑞,鲍敬伟,胡滨.全球油气勘探进展与趋势[J].石油勘探与开发,2013,40(4):409-413.]
[2]Dai Jinxing,Ni Yunyan,Wu Xiaoqi.Tight gas in China and its significance in exploration and exploitation[J].Petroleum Exploration and Development,2012,39(3):257-264.[戴金星,倪云燕,吴小奇.中国致密砂岩气及在勘探开发上的重要意义[J].石油勘探与开发,2012,39(3):257-264.]
[3]Fan Huaicai,Zhong Bing,Li Xiaoping et al.Studies on water invasion mechanism of fractured-watered gas reservoir[J].Natural Gas Geoscience,2012,23(6):1179-1184.[樊怀才,钟兵,李晓平,等.裂缝型产水气藏水侵机理研究[J].天然气地球科学,2012,23(6):1179-1184.]
[4]Hao Guoli,Liu Guangdi,Xie Zengye,et al.Gas-water distributed pattern in Xujiahe Formation tight gas  sandstone reservoir and influential factor in central Sichuan Basin[J].Natural Gas Geoscience,2010,21(3):427-434.[郝国丽,柳广弟,谢增业,等.川中地区须家河组致密砂岩气藏气水分布模式及影响因素分析[J].天然气地球科学,2010,21(3):427-434.]
[5]Wei Yunsheng,Shao Hui,Jia Ailin,et al.Gas water distribution model and control factors in low permeability high water saturation sandstone gas reservoirs[J].Natural Gas Geoscience,2009,20(5):822-826.[位云生,邵辉,贾爱林,等.低渗透高含水饱和度砂岩气藏气水分布模式及主控因素研究[J].天然气地球科学,2009,20(5):822-826.]
[6]Zhang Fengdong,Kang You,Liu Lijun,et al.Aqueous trapping damage models for fracture-pore tight sandstone gas reservoirs[J].Natural Gas Geoscience,2009,20(5):812-816.[张凤东,康毅力,游利军,等.裂缝—孔隙型致密砂岩气藏水相圈闭损害模式[J].天然气地球科学,2009,20(5):812-816.][JP]
[7]Zhao Wenzhi,Bian Congsheng,Xu Zhaohui.Similarities and differences between natural gas accumulations in Sulige Gasfield in Ordos Basin and Xujiahe Gasfield in central Sichuan Basin[J].Petroleum Exploration and Development,2013,40(4):400-408.[赵文智,卞从胜,徐兆辉.苏里格气田与川中须家河组气田成藏共性与差异[J].石油勘探与开发,2013,40(4):400-408.][JP]
[8]Dai Jinyou,Li Jianting,Wang Baogang.Distribution regularity and formation mechanism of gas and water in the western area of Sulige Gasfield,NW China[J].Petroleum Exploration and Development,2012,39(5):524-529.[代金友,李建霆,王宝刚,等.苏里格气田西区气水分布规律及其形成机理[J].石油勘探与开发,2012,39(5):524-529.]
[9]Hu Yong,Li Xizhe,Wan Yujin,et al.Physical simulation on gas percolation in tihgt sandstone[J].Petroleum Exploration and Development,2013,40(5):580-584.[胡勇,李熙喆,万玉金,等.致密砂岩气渗流特征物理模拟[J].石油勘探与开发,2013,40(5):580-584.]
[10]Hu Yong,Shao Yang,Lu Yongliang,et al.Experimental study on occurrence models of water in pores and the influencing to the development of tight gas reservoir[J].Natural Gas Geoscience,2011,22(1):176-180.[胡勇,邵阳,陆永亮,等.低渗气藏储层孔隙中水的赋存模式及对气藏开发的影响[J].天然气地球科学,2011,22(1):176-180.]
[11]Wu Jianfa,Guo Jianchun,Zhao Jinzhou.Study on gas/water tow phase percolation mechanis m for fractured formations[J].Natural Gas Industry,2004,24(11):85-87.[吴建发,郭建春,赵金洲.裂缝性地层气水两相渗流机理研究[J].天然气工业,2004,24(11):85-87.]

[1] 黄禹忠,刁素,栗铁峰,何红梅. 致密砂岩气藏压裂伤害及对策——以川西坳陷ZH构造JS12气藏为例[J]. 天然气地球科学, 2018, 29(4): 579-585.
[2] 王颖, 邓守伟, 范晶, 邹晓品, 杨静. 松辽盆地南部重点断陷天然气地质条件、资源潜力及勘探方向[J]. 天然气地球科学, 2018, 29(10): 1455-1464.
[3] 张吉,侯科锋,李浮萍,田敏,张志刚. 基于储层地质知识库约束的致密砂岩气藏储量评价——以鄂尔多斯盆地苏里格气田苏14区块为例[J]. 天然气地球科学, 2017, 28(9): 1322-1329.
[4] 黄禹忠,刁素,尹琅,栗铁峰,刘琦. 致密砂岩气藏水平井细分段适应性分析[J]. 天然气地球科学, 2017, 28(3): 460-465.
[5] 丁景辰. 高含水致密气藏水平井稳产原因分析及启示——以鄂尔多斯盆地大牛地气田为例[J]. 天然气地球科学, 2017, 28(1): 127-134.
[6] 公言杰,柳少波,赵孟军,姜林,高晓辉. 油水同层型致密油原始含油饱和度实验测定新方法及实例应用[J]. 天然气地球科学, 2016, 27(12): 2154-2159.
[7] 盛军,孙卫,段宝虹,刘艳妮,张弢,曹雷. 致密砂岩气藏水锁效应机理探析——以苏里格气田东南区上古生界盒8段储层为例[J]. 天然气地球科学, 2015, 26(10): 1972-1978.
[8] 李奇,高树生,杨朝蓬,冯全乐,叶礼友. 致密砂岩气藏阈压梯度对采收率的影响[J]. 天然气地球科学, 2014, 25(9): 1442-1450.
[9] 徐梦雅,冉启全,李宁,沈冠中. 应力敏感性致密气藏压裂井动态反演新方法[J]. 天然气地球科学, 2014, 25(12): 2058-2064.
[10] 费世祥,王东旭,林刚,潘晓丽,王勇,张保国,徐运动,刘雪玲. 致密砂岩气藏水平井整体开发关键地质技术——以苏里格气田苏东南区为例[J]. 天然气地球科学, 2014, 25(10): 1620-1629.
[11] 王少飞,安文宏,陈鹏,刘道天,梁鸿军. 苏里格气田致密气藏特征与开发技术[J]. 天然气地球科学, 2013, 24(1): 138-145.
[12] 胡林楠,赵靖舟. 致密砂岩气藏有效厚度确定方法及应用探讨[J]. 天然气地球科学, 2013, 24(1): 69-77.
[13] 游利军,李雷,康毅力,石玉江,张海涛,杨小明. 考虑有效应力与含水饱和度的致密砂岩气层供气能力[J]. 天然气地球科学, 2012, 23(4): 764-769.
[14] 赵靖舟, 王力, 孙兵华, 白玉彬, 吴伟涛. 鄂尔多斯盆地东部构造演化对上古生界大气田形成的控制作用[J]. 天然气地球科学, 2010, 21(6): 875-881.
[15] 位云生, 邵辉, 贾爱林, 何东博, 季丽丹, 樊茹. 低渗透高含水饱和度砂岩气藏气水分布模式及主控因素研究[J]. 天然气地球科学, 2009, 20(5): 822-826.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!