天然气地球科学

• 天然气开发 • 上一篇    下一篇

非均质气藏可动水评价及提高采收率新思路

高大鹏,孙敬,韩晓红,郑金定,黄敏   

  1. 1.中国石油勘探开发研究院,北京 100083;2.北京大学地球与空间科学学院,北京 100871;
    3.长江大学石油工程学院,湖北  武汉 430100
  • 收稿日期:2013-08-29 修回日期:2013-10-06 出版日期:2014-09-10 发布日期:2014-09-10
  • 作者简介:高大鹏(1989-),男,山东利津人,博士研究生,主要从事气藏提高采收率研究.E-mail:gaodapeng2009@163.com.
  • 基金资助:
    国家科技重大专项(编号:2011ZX05010-002)资助.
     

Assessment of the Movable Water in Heterogeneous Gas Reservoir and New Thoughts of Enhancing Gas Recovery

GAO Da-peng,SUN Jing,HAN Xiao-hong,ZHENG Jin-ding,HUANG Min   


  1. (1.PetroChina Research Institute of Petroleum Exploration and Development,Beijing 100083,China;
    2.School of Earth and Space Sciences,Peking University,Beijing 100871,China;
    3.School of Petroleum Engineering,Yangtze University,Wuhan 430100,China)
  • Received:2013-08-29 Revised:2013-10-06 Online:2014-09-10 Published:2014-09-10

摘要:

气藏衰竭式开采过程中,因高含水停喷甚至大面积水淹造成气井关井是很难治理的问题,准确评价气藏可动水对于高含水气藏治理及提高采收率有重要意义。以塔里木盆地塔河非均质底水气藏为例,测试了不同物性储层、不同驱替压差条件下的岩心含水饱和度、可动水饱和度和束缚水饱和度,结合渗透率、孔隙度等主要影响因素进行对比分析,研究发现同一岩心的可动水饱和度和含水饱和度随驱替压差的变化趋势一致,而且岩心的渗透率越大,相同驱替压差下可动水饱和度和含水饱和度越高;在含水饱和度和可动水饱和度较高时,两者随驱替压差增加而快速下降,而在含水饱和度和可动水饱和度较低时,两者随驱替压差增加下降缓慢;气藏不同区块的岩心含水饱和度和可动水饱和度随驱替压差变化的范围不同。在可动水评价基础上,结合精细地质建模及数值模拟技术,根据气藏剩余气及含水饱和度分布状态,设计了综合部署“采气井、阻水井、排水井”的治理增产方案,通过加强井网控制程度、封堵优势渗流通道、排泄地层水体能量进而提高气藏采收率。

关键词: 气藏, 可动水, 驱替压差, 非均质性, 综合治理, 提高采收率

Abstract:

For the gas reservoir utilizing exhausting way to develop,it is a serious problem that wells stop production or shut down because of water flooding,so it is important to evaluate the movable water of high water content gas reservoir for managing and enhancing gas recovery.The study takes the heterogeneous gas reservoir with bottom water in Tarim Basin as an example,and then tests the cores′ water saturation and movable water saturation and irreducible water saturation,and takes comparative analysis with permeability and porosity.Finally,we find that movable water saturation and water saturation have the same trends in the same core under different flooding pressure,and they are bigger in cores with higher permeability.They decrease rapidly with the increase of flooding pressure when they are at high value,and they decrease slowly with the increase of flooding pressure when they are at low value.Their variation range differentiates in different block with different characteristics.Based on the assessment of movable water and the distribution of residual gas and water,this study puts forward the new thought of enhancing gas recovery by utilizing fine geological model and numerical simulation,through reinforcing well net controlling degree and sealing advantaged seepage channel and decreasing the water energy,designs the improvement project with gas wells,obstacle wells and drainage wells.

Key words: Gas reservoir, Movable water, Displacement pressure difference, Heterogeneity, Comprehensive treatment, Enhance gas recovery

中图分类号: 

  • TE357
[1] Hu Yongle,Luo Kai,Li Xiangfang,et al.Condensate Phase Behavior and Percolation Mechanism of Low Permeability Gas Reservoir Fluid[M].Beijing:Science Press,2010.[胡永乐,罗凯,李相方,等.凝析、低渗气藏流体相态与渗流机理[M].北京:科学出版社,2010.]
[2]Gao Dapeng,Liu Dehua,Lao Shenghua,et al.Bottom water energy evaluation of the condensate gas reservoir in AT1 block Tahe
Oilfield[J].Journal of Yangtze University:Natural Science Edition,2012,9(8):94-96.[高大鹏,刘德华,劳胜华,等.塔河油田AT1区块凝析气藏底水能量评价[J].长江大学学报:自然科学版,2012,9(8):94-96.]
[3]Ye Liyou,Gao Shusheng,Xiong Wei.Demonstration of mobile water saturation as evaluation parameter of low permeability sandstone gas reservoir[J].Journal of Oil and Gas Technology,2011,33(1):57-59.[叶礼友,高树生,熊伟.可动水饱和度作为低渗砂岩气藏储层评价参数的论证[J].石油天然气学报,2011,33(1):57-59.]
[4]Shao Weizhi,Xie Jingyu,Chi Xiurong,et al.On the relation of porosity and permeability in low porosity and low permeability rock[J].Well Logging Technology,2013,37(2):149-152.[邵维志,解经宇,迟秀荣,等.低孔隙度低渗透率岩石孔隙度与渗透率关系研究[J].测井技术,2013,37(2):149-152.]
[5]Huang Sijing,Zhang Meng,Zhu Shiquan,et al.Control of origin of pores over relationship of porosity to permeability in sandstone reservoir:A case study from Yanchang sandstone of Triassic of eastern Gansu,Ordos Basin[J].Journal of Chengdu University of Technology:Science & Technology Edition,2004,31(6):648-650.[黄思静,张萌,朱世全,等.砂岩孔隙成因对孔隙度/渗透率关系的控制作用——以鄂尔多斯盆地陇东地区三叠系延长组为例[J].成都理工大学学报:自然科学版,2004,31(6):648-650.]
[6]Guo Ping,Huang Weigang,Jiang Yiwei,et al.Research on the irreducible and movable water of tight sandstone gas reservoir[J].Natural Gas Industry,2006,26(10):99-101.[郭平,黄伟岗,姜贻伟,等.致密气藏束缚与可动水研究[J].天然气工业,2006,26(10):99-101.]
[7]Zhou Dezhi.Study of the relation between immobile water saturation and critical water saturation[J].Petroleum Geology and Recovery Efficiency,2006,13(6):81-83.[周德志.束缚水饱和度与临界水饱和度关系的研究[J].油气地质与采收率,2006,13(6):81-83.]
[8]Xu Wenping,Wu Chaodong,Guan Ping,et al.Prediction of free water in the unconsolidated sandstone reservoir in the Quaternary gas field,Qaidam Basin[J].Natural Gas Geoscience,2012,23(5):953-954.[许文平,吴朝东,关平,等.柴达木盆地第四系疏松砂岩天然气储层可动水预测方法研究[J].天然气地球科学,2012,23(5):953-954.]
[9]Yang Manping,Li Yun,Peng Caizhen.Analysis of stress sensitivity for irreducible water of gas reservoir[J].Natural Gas Geoscience,2004,15(4):391-393.[杨满平,李允,彭彩珍.气藏储层含束缚水的应力敏感性分析[J].天然气地球科学,2004,15(4):391-393.]
[10]Wang Weiying,Zhang Gongshe.The influence of irreducible water and rock property to self-absorption[J].Acta Petrolei Sinica,2000,21(3):66-68.[汪伟英,张公社.束缚水饱和度、岩石性质对自吸的影响[J].石油学报,2000,21(3):66-68.]
[11]Wang Liying,Yang Hongzhi,Ye Liyou,et al.Using mobile water saturation to forecast the characteristics of water production of Xujiahe Formation in the center of Sichuan[J].Natural Gas Industry,2012,32(11):47-50.[王丽影,杨洪志,叶礼友,等.利用可动水饱和度预测川中地区须家河组气井产水特征[J].天然气工业,2012.32(11):47-50.]
[12]He Shumei,Xiong Yu,Sun Liping,et al.Fluid phase state reconstruction for complex block gas condensate reservoir with oil ring[J].Natural Gas Geoscience,2012,23(1):186-187.[何书梅,熊钰,孙丽萍,等.复杂断块带油环凝析气藏流体相态重构[J].天然气地球科学,2012,23(1):186-187.]
[13]Boualem Marir,Sonatrach Inc,Djebbar Tiab.Performance of Horizontal Wells in Gas Condensate Reservoirs:Hassi R′Mel Field Algeria[R].SPE Russian Oil and Gas Technical Conference and Exhibition,3-6 October,Moscow,Russia.SPE 100753,2006.
[14]Yang Bo,Tang Hai,Lü Dongliang,et al.Bottom water reservoir drainage gas recovery in advance[J].Journal of Oil and Gas Technology,2010,32(1):351-353.[杨波,唐海,吕栋梁,等.底水气藏超前排水采气[J].石油天然气学报,2010,32(1):351-353.]

 
[1] 李滔,李闽,张烈辉,田山川,赵潇雨,郑玲丽. 微多孔介质迂曲度与孔隙结构关系[J]. 天然气地球科学, 2018, 29(8): 1181-1189.
[2] 黄雨,李晓平,谭晓华. 三重介质复合气藏水平井不稳定产量递减动态分析[J]. 天然气地球科学, 2018, 29(8): 1190-1197.
[3] 朱宽亮,吴晓红,康毅力,游利军,田键,宋静晗. 致密火山岩气藏水相和油相圈闭损害实验评价——以南堡凹陷5号构造沙河街组为例[J]. 天然气地球科学, 2018, 29(7): 1042-1050.
[4] 吴明涛,王晓冬,姚天福. 致密气藏气井非稳态线性渗流特征分析新方法[J]. 天然气地球科学, 2018, 29(7): 1060-1066.
[5] 曾凡辉,王小魏,郭建春,郑继刚,李亚州,向建华. 基于连续拟稳定法的页岩气体积压裂水平井产量计算[J]. 天然气地球科学, 2018, 29(7): 1051-1059.
[6] 吕志凯,贾爱林,唐海发,刘群明,王泽龙. 大型致密砂岩气藏水平井产能评价与新认识[J]. 天然气地球科学, 2018, 29(6): 873-879.
[7] 汪道兵,葛洪魁,宇波,文东升,周珺,韩东旭,刘露. 页岩弹性模量非均质性对地应力及其损伤的影响[J]. 天然气地球科学, 2018, 29(5): 632-643.
[8] 赵力彬,张同辉,杨学君,郭小波,饶华文. 塔里木盆地库车坳陷克深区块深层致密砂岩气藏气水分布特征与成因机理[J]. 天然气地球科学, 2018, 29(4): 500-509.
[9] 杨丽杰,侯读杰,陈晓东,刁慧. 东海盆地西湖凹陷中部古近系地层水化学特征及地质意义[J]. 天然气地球科学, 2018, 29(4): 559-571,596.
[10] 黄禹忠,刁素,栗铁峰,何红梅. 致密砂岩气藏压裂伤害及对策——以川西坳陷ZH构造JS12气藏为例[J]. 天然气地球科学, 2018, 29(4): 579-585.
[11] 何文军,杨海波,费李莹,王学勇,杨彤远,杨翼波,鲍海娟. 准噶尔盆地新光地区佳木河组致密砂岩气有利区资源潜力综合分析[J]. 天然气地球科学, 2018, 29(3): 370-381.
[12] 洪峰,姜林,卓勤功,鲁雪松,马行陟,郝加庆. 中国前陆盆地异常高压气藏类型[J]. 天然气地球科学, 2018, 29(3): 317-327.
[13] 张永庶,伍坤宇,姜营海,王鹏,蔡智洪,高发润,谭武林,高树芳,鲜本忠. 柴达木盆地英西深层碳酸盐岩油气藏地质特征[J]. 天然气地球科学, 2018, 29(3): 358-369.
[14] 王怒涛,陈仲良,祝明谦,王玉根,张琰. 基于质量守恒原理的凝析气藏单井动态储量计算[J]. 天然气地球科学, 2018, 29(3): 424-428.
[15] 孟凡坤,雷群,徐伟,何东博,闫海军,邓惠. 应力敏感碳酸盐岩复合气藏生产动态特征分析[J]. 天然气地球科学, 2018, 29(3): 429-436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!