天然气地球科学

• 非常规天然气 • 上一篇    

库车坳陷东北部侏罗系泥页岩吸附能力及影响因素分析

任泽樱,刘洛夫,高小跃,肖飞,王英,吴康军,肖正阳   

  1. 1.中国石油大学(北京)油气资源与探测国家重点实验室,北京 102249;
    2.中国石油大学(北京)盆地与油藏研究中心,北京 102249
  • 收稿日期:2013-06-19 修回日期:2013-08-22 出版日期:2014-04-10 发布日期:2014-04-10
  • 通讯作者: 任泽樱rzydongying@qq.com E-mail:rzydongying@qq.com
  • 作者简介:任泽樱(1990-),女,安徽宿州人,硕士研究生,主要从事非常规油气勘探研究. E-mail:rzydongying@qq.com.
  • 基金资助:

    国家科技重大专项“页岩气勘探开发关键技术”(编号:2011ZH05018-002);国土资源部“全国页岩气资源潜力调查评价及有利区优选”(编号:2009GYXQ15-09-00);油气资源与探测国家重点实验室项目(编号:prp2009-02)联合资助.

Adsorption Capacity and Its Influence Factors of the Jurassic Shalein the Northeastern Kuqa Depression

REN Ze-ying,LIU Luo-fu,GAO Xiao-yue,XIAO Fei,WANG Ying,WU Kang-jun,XIAO Zheng-yang   

  1. 1.State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum (Beijing),Beijing
    102249,China;2.Basin and Reservoir Research Center,China University of Petroleum (Beijing),Beijing 102249,China
  • Received:2013-06-19 Revised:2013-08-22 Online:2014-04-10 Published:2014-04-10

摘要:

页岩气主要以吸附和游离状态赋存于泥页岩中,其中吸附气含量占页岩气总量的40%~85%,泥页岩的吸附能力在一定程度上决定了页岩气成藏规模的大小。为研究库车坳陷东北部侏罗系泥页岩的吸附能力和影响因素,对采集的岩心样品进行了X-射线衍射全岩矿物、微观孔隙结构和等温吸附等分析测试。结果显示:研究区侏罗系泥页岩最大吸附气量(VL)介于0.58~8.52m3/t之间,多小于2m3/t;Langmuir压力介于0.55~5.24MPa之间。分析表明:有机质是页岩气吸附的主要载体,其丰度是泥页岩吸附能力的直接控制因素;在有机质含量较低时,黏土矿物具有较强的吸附能力,是泥页岩吸附能力的主控因素。此时,微观孔隙结构对泥页岩吸附能力影响较大;不同类型的黏土矿物对吸附能力的影响不同,研究区伊/蒙混层吸附能力较强,对吸附能力影响较明显;最大吸附气量与比表面积、总孔体积具有良好的正相关关系;此外,湿度、压力等外部环境也对吸附能力有一定的影响。

关键词: 页岩气, 吸附能力, 影响因素, 侏罗系泥页岩, 库车坳陷

Abstract:

The shale gas is stored in shales mainly in adsorption and freedom states,and the former accounts for 40% to 85% of the total shale gas amount.Thus the shale adsorption capacity determines the pool scale of shale gas to some extent.In order to study the adsorption capacity and the influence factors the Jurassic shale in the northeastern Kuqa Depression,X-ray diffraction,microscopic pore structures and isothermal adsorption tests were carried out.The results indicate that the maximum amounts of adsorption (VL) range from 0.58 m3/t to 8.52m3/t,mainly lower than 2m3/t,and the Langmuir pressures are between 0.55MPa and 5.24MPa.The study shows that organic matter is the main carrier of adsorption gas and its abundance is the dominant factor influencing the adsorption capacity of the shale.When the organic matter content is low,the clay mineral is the main controlling factor for its strong adsorption capacity,and the micropore structure also significantly influences the adsorption capacity of the shale.The adsorption capacity for different types of clay minerals varies,and the illite-smectite mixed-layer has greater influence on the adsorption capacity of Jurassic shale in the northeastern Kuqa Depression for its larger adsorption property.A good positive correlation exists between the maximum amounts of adsorption gas and the specific surface area as well as total pore volume.In addition,the external conditions such as the moisture and pressure also affect the adsorption capacity to some extent.

Key words: Shale gas, Adsorption capacity, Influence factors, Jurassic shale, Kuqa Depression

中图分类号: 

  • TE122.2

[1]Zou Caineng,Dong Dazhong,Wang Shejiao,et al.Geological characteristics,formation mechanism and resource potential of shale gas in China[J].Petroleum Exploration and Development,2010,37(6):641-653.[邹才能,董大忠,王社教,等.中国页岩气形成机理、地质特征及资源潜力[J].石油勘探与开发,2010,37(6):641-653.]

[2]Zhang Jinchuan,Xu Bo,Nie Haikuan,et al.Exploration potential of shale gas resources in China[J].Natural Gas Industry,2008,28(6):136-140.[张金川,徐波,聂海宽,等.中国页岩气资源勘探潜力[J].天然气工业,2008,28(6):136-140.]

[3]Bustin R M.Gas shale tapped for big pay[J].AAPG Explorer,2005,26 (2):5-7.

[4]Curtis J B.Fractured shale-gas systems[J].AAPG Bulletin,2002,86 (11):1921-1938.

[5]Dai Jinxing,Qin Shengfei,Tao Shizhen,et al.Developing trends of natural gas industry and the significant progress on gas geological theories in China[J].Natural Gas Geoscience,2005,16(2):127-142.[戴金星,秦胜飞,陶士振,等.中国天然气工业发展趋势和天然气地学理论重要进展[J].天然气地球科学,2005,16(2):127-142.]

[6]Li Mei,Bao Jianping,Wang Hai,et al.The analysis on the maturity parameters of source rock and hydrocarbons in Kuche foreland basin of Tarim Basin[J].Natural Gas Geoscience,2004,15(4):367-378.[李梅,包建平,汪海,等.库车前陆盆地烃源岩和烃类成熟度及其地质意义[J].天然气地球科学,2004,15(4):367-378.]

[7]Tang Huaguo,Wang Gang,Peng Shi,et al.Exploration prospects for natural gas in Kuche Depression[J].Natural Gas Geoscience,2003,14(6):459-462.[汤华国,王刚,彭轼,等.库车坳陷天然气资源勘探前景[J].天然气地球科学,2003,14(6):459-462.]

[8]Sun Jinshan,Liu Guohong,Sun Ming′an,et al.Source rock evaluation of coal-measures strata in Kuqa Depression of Tarim Basin[J].Journal of Southwest Petroleum Institute,2003,25(6):1-4.[孙金山,刘国宏,孙明安,等.库车坳陷侏罗系煤系烃源岩评价[J].西南石油学院学报,2003,25(6):1-4.]

[9]Guo Jigang,Pang Xiongqi,Liu Dandan,et al.Hydrocarbon expulsion for Middle-Lower Jurassic coal measures and evaluation of potential resource in Kuqa Depression[J].Natural Gas Geoscience,2012,23(2):327-334.[郭继刚,庞雄奇,刘丹丹,等.库车坳陷中、下侏罗统煤系烃源岩排烃特征及资源潜力评价[J].天然气地球科学,2012,23(2):327-334.]

[10]Li Weifeng,Wang Chengshan,Gao Zhenzhong,et al.Sedimentary evolution of Mesozoic era in Kuche Depression,Tarim Basin[J].Acta Sedimentologica Sinica,2000,18(4):534-538.[李维锋,王成善,高振中,等.塔里木盆地库车坳陷中生代沉积演化[J].沉积学报,2000,18(4):534-538.]

[11]Zhang Qin,Bian Ruikang,Tang Ying,et al.Geological condition and exploration prospect of shale gas in Kuqa Depression[J].Journal of Daqing Petroleum Institute,2010,34(6):13-17.[张琴,边瑞康,唐颖,等.库车拗陷页岩气聚集条件与勘探前景[J].大庆石油学院学报,2010,34(6):13-17.]

[12]Zhu Minqing.Characterization of physical structure of catalysts and other adsorbents with nitrogen adsorption static columetric method[J].Qilu Petrochemical Technology,2006,34(1):14-17.[朱敏轻.用氮吸附静态容量法表征催化剂及其他吸附剂的物理结构[J].齐鲁石油化工,2006,34(1):14-17.]

[13]Ross D J K,Bustin R M.Characterizing the shale gas resource potential of Devonian-Mississippian strata in the western Canada sedimentary basin:Application of an integrated formation evaluation[J].AAPG Bulletin,2008,92(1):87-125.

[14]Chalmers G R L,Bustin R M.Lower Cretaceous gas shales in northeastern British Columbia,PartⅠ:Geological controls on methane sorption capacity[J].Bulletin of Canadian Petroleum Geology,2008,56(1):1-21.

[15]Nie Haikuan,Tang Xuan,Bian Ruikang.Controlling factors for shale gas accumulation and prediction of potential development area in shale gas reservoir of south China[J].Acta Petrolei Sinica,2009,30(4):484-491.[聂海宽,唐玄,边瑞康.页岩气成藏控制因素及中国南方页岩气发育有利区预测[J].石油学报,2009,30(4):484-491.]

[16]Yang Zhenheng,Li Zhiming,Shen Baojian,et al.Shale gas accumulation conditions and exploration prospect in southern Guizhou Depression[J].China Petroleum Exploration,2009,(3):24-28.[杨振恒,李志明,沈宝剑,等.页岩气成藏条件及我国黔南坳陷页岩气勘探前景浅析[J].中国石油勘探,2009,(3):24-28.]

[17]Wang Feiyu,Zhang Shuichang,Zhang Baomin,et al.Organic maturity of Mesozoic source rocks in Kuqa Depression,Tarim Basin[J].Xinjiang Petroleum Geology,1999,20(3):221-224.[王飞宇,张水昌,张宝民,等.塔里木盆地库车坳陷中生界烃源岩有机质成熟度[J].新疆石油地质,1999,20(3):221-224.]

[18]Wu Jingshu,Yu Bingsong,Li Yuxi.Adsorption capacity of shale gas and controlling factors from the well Yuye 1 at the southeast of Chongqing[J].Journal of Southwest Petroleum University:Science & Technology Edition,2012,34(4):40-48.[武景淑,于炳松,李玉喜.渝东南渝页1井页岩气吸附能力及其主控因素[J].西南石油大学学报:自然科学版,2012,34(4):40-48.]

[19]Rouquerol J,Avnir D,Fairbridge C W,et al.Recommendations for the characterization of porous solids[J].Pure and Applied Chemistry,1994,66(8):1739-1758.

[20]Zhang Linye,Li Zheng,Zhu Rifang.The formation and exploitation of shale gas[J].Natural Gas Industry,2009,29(1):124-128.[张林晔,李政,朱日房.页岩气的形成与开发[J].天然气工业,2009,29(1):124-128.]

[21]Ji Liming,Qiu Junli,Xia Yanqing,et al.Micro-pore characteristics and methane adsorption properties of common clay minerals by electron microscope scanning[J].Acta Petrolei Sinica,2012,33(2):249-256.[吉利明,邱军利,夏燕青,等.常见黏土矿物电镜扫描微孔隙特征与甲烷吸附性[J].石油学报,2012,33(2):249-256.]

[22]Passey Q R,Bohacs K M,Esch W L,et al.From oil-prone source rock to gas-producing shale reservoir:Geologic and petrophysical characterization of unconventional shale-gas reservoirs[C]//International Oil and Gas Conference and Exhibition in China,8-10 June,Beijing,China.SPE,131350.Richardson,Texas:Society of Petroleum Engineers,2010.

[23]Guo Shaobin,Sun Yinsen,Wang Yigang,et al.The effect of temperature and pressure on shale adsorption capability[J].Sustainable Energy,2012,2(1):28-30.[郭少斌,孙寅森,王义刚,等.温度和压力对泥页岩吸附性能的影响[J].可持续能源,2012,2(1):28-30.]

[1] 包建平, 朱翠山, 申旭. 金刚烷类化合物与库车坳陷克拉2构造凝析油的形成机理研究[J]. 天然气地球科学, 2018, 29(9): 1217-1230.
[2] 张荣虎,王珂,王俊鹏,孙雄伟,李君,杨学君,周露. 塔里木盆地库车坳陷克深构造带克深8区块裂缝性低孔砂岩储层地质模型[J]. 天然气地球科学, 2018, 29(9): 1264-1273.
[3] 赵文韬,荆铁亚,吴斌,周游,熊鑫. 断裂对页岩气保存条件的影响机制——以渝东南地区五峰组—龙马溪组为例[J]. 天然气地球科学, 2018, 29(9): 1333-1344.
[4] 夏鹏,王甘露,曾凡桂,牟雨亮,张昊天,刘杰刚. 黔北地区牛蹄塘组高—过成熟页岩气富氮特征及机理探讨[J]. 天然气地球科学, 2018, 29(9): 1345-1355.
[5] 任茜莹,代金友,穆中奇. 气藏采收率影响因素研究与启示——以靖边气田A井区为例[J]. 天然气地球科学, 2018, 29(9): 1376-1382.
[6] 杨海军,张荣虎,杨宪彰,王珂,王俊鹏,唐雁刚,周露. 超深层致密砂岩构造裂缝特征及其对储层的改造作用——以塔里木盆地库车坳陷克深气田白垩系为例[J]. 天然气地球科学, 2018, 29(7): 942-950.
[7] 康毅力,豆联栋,游利军,陈强,程秋洋. 富有机质页岩增产改造氧化液浸泡离子溶出行为[J]. 天然气地球科学, 2018, 29(7): 990-996.
[8] 曾凡辉,王小魏,郭建春,郑继刚,李亚州,向建华. 基于连续拟稳定法的页岩气体积压裂水平井产量计算[J]. 天然气地球科学, 2018, 29(7): 1051-1059.
[9] 朱维耀,马东旭. 页岩储层有效应力特征及其对产能的影响[J]. 天然气地球科学, 2018, 29(6): 845-852.
[10] 余川,曾春林,周洵,聂海宽,余忠樯. 大巴山冲断带下寒武统页岩气构造保存单元划分及分区评价[J]. 天然气地球科学, 2018, 29(6): 853-865.
[11] 邱 振,邹才能,李熙喆,王红岩,董大忠,卢斌,周尚文,施振生,冯子齐,张梦琪. 论笔石对页岩气源储的贡献——以华南地区五峰组—龙马溪组笔石页岩为例[J]. 天然气地球科学, 2018, 29(5): 606-615.
[12] 汪道兵,葛洪魁,宇波,文东升,周珺,韩东旭,刘露. 页岩弹性模量非均质性对地应力及其损伤的影响[J]. 天然气地球科学, 2018, 29(5): 632-643.
[13] 龙胜祥,冯动军,李凤霞,杜伟. 四川盆地南部深层海相页岩气勘探开发前景[J]. 天然气地球科学, 2018, 29(4): 443-451.
[14] 赵力彬,张同辉,杨学君,郭小波,饶华文. 塔里木盆地库车坳陷克深区块深层致密砂岩气藏气水分布特征与成因机理[J]. 天然气地球科学, 2018, 29(4): 500-509.
[15] 贺领兄,宋维刚,安生婷,徐永锋,沈娟,路超,王军. 青海东昆仑地区八宝山盆地烃源岩有机地球化学特征与页岩气勘探前景[J]. 天然气地球科学, 2018, 29(4): 538-549.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!