天然气地球科学

• 天然气地质学 • 上一篇    下一篇

沉积盆地主要超压成因机制识别模式及贡献

张凤奇,王震亮,钟红利,杨超,王江涛   

  1. 1.西安石油大学地球科学与工程学院,陕西 西安 710065;
    2.西北大学地质学系,陕西 西安 710069;
    3.西安科技大学地质与环境学院,陕西 西安 710054;
    4.陕西延长石油(集团)有限责任公司研究院,陕西 西安 710075
  • 收稿日期:2013-04-17 修回日期:2013-06-13 出版日期:2013-12-10 发布日期:2013-12-10
  • 通讯作者: 张凤奇zhangfengqi68@126.com. E-mail:zhangfengqi68@126.com.
  • 作者简介:张凤奇(1981-),男,河南周口人,讲师,博士,主要从事油气成藏地质学方面的教学和研究工作. E-mail:zhangfengqi68@126.com.
  • 基金资助:

    国家科技重大专项(编号:2011ZX05003001-003);陕西省教育厅科研计划项目(编号:2013JK0846);博士启动基金(编号:YS29031610)联合资助.

Recognition Model and Contribution Evaluation of Main Overpressure Formation Mechanisms in Sedimentary Basins

ZHANG Feng-qi,WANG Zhen-liang,ZHONG Hong-li,YANG Chao,WANG Jiang-tao   

  1. 1.School of Earth Science and Engineering,Xi′an Shiyou University,Xi′an 710065,China;
    2.Department of Geology,Northwest University,Xi′an 710069,China;
    3.College of Geology and Environment,Xi′an University of Science and Technology,Xi′an 710054,China;
    4.Research Institute of Shaanxi Yanchang Petroleum Company,Xi′an 710075,China
  • Received:2013-04-17 Revised:2013-06-13 Online:2013-12-10 Published:2013-12-10

摘要:

沉积盆地中超压形成往往受到多种因素的控制,使得对每种超压机制的识别及其评价较为困难。将超压的形成机制总结为4类:不均衡压实、流体膨胀、超压传递和侧向构造应力。建立了4类主要超压形成机制的综合识别模式:不均衡压实和侧向构造应力增压地层中孔隙度表现为明显的高异常,而流体膨胀、超压传递增压地层中孔隙度无明显异常;4种类型增压机制在声波速度与垂向有效应力、密度与声波速度的变化关系曲线上表现出明显差异,不均衡压实增压地层中声波速度与垂向有效应力的变化应遵循正常压实作用的指数变化关系,而流体膨胀、超压传递、侧向构造应力增压地层明显偏离正常压实趋势线;不均衡压实、侧向构造应力增压地层中声波速度与密度的变化遵循正常压实趋势线,而流体膨胀、超压传递增压地层则偏离正常压实趋势线。依据垂向有效应力的减小量等于流体膨胀、超压传递、侧向构造应力中一种或多种共同作用产生的流体增压量的假定,结合实际地质条件分析,确定并评价相应增压机制地层中产生的流体增压量及其对地层超压的贡献率。尽管该假设下的评价结果会低估该机制的增压作用,但仍可为沉积盆地中复杂地区的超压识别和评价提供较好的方法。

关键词: 超压成因机制, 测井响应, 识别模式, 评价方法, 沉积盆地

Abstract:

Overpressures in sedimentary basins are usually controlled by many factors,which make recognition and evaluation of each overpressure mechanism be difficult.The paper divided the causes of overpressure into four general categories: disequilibrium compaction,fluid expansion,overpressure transfer,and lateral tectonic stress.The comprehensive recognition model of these overpressure mechanism types was established.Disequilibrium compaction and lateral tectonic stress overpressures are typically associated with abnormally high porosities and overpressures generated by fluid expansion and overpressure transfer mechanisms are not associated with a porosity anomaly.Sonic velocity-vertical effective stress and sonic velocity-density plots are used to distinguish between overpressures generated by the four types.On a sonic velocity-vertical effective stress plot,sediments that have undergone disequilibrium compaction remain on the exponential function curve of normal compaction loading.However,overpressures generated by fluid expansion or overpressure transfer or lateral tectonic stress follows a sonic velocity-vertical effective stress path away from the loading curve.On a sonic velocity-density plot,sediments that have undergone disequilibrium compaction or lateral tectonic stress remain on the loading curve.However,overpressures generated by fluid expansion or overpressure transfer follow a sonic velocity-density path away from the loading curve.On the basis of the hypothesis that the decreasing magnitudes of vertical effective stress are equal to the overpressures generated by fluid expansion or overpressure transfer or lateral tectonic stress,the overpressure mechanisms are assured and the magnitudes of overpressure and the relative contribution generated by these overpressures were evaluated combined with the regional geological conditions.Although the evaluation results will underestimate the overpressure generated by these mechanisms,these can provide a good method for recognition and evaluation of overpressure in complex regions of sedimentary basins.

Key words: Formation mechanism of overpressure, Well-log response, Recognition model, Evaluation method, Sedimentary basins

中图分类号: 

  • TE121.1
[1]Du Xu,Zheng Hongyin,Jiao Xiuqiong.Abnormal pressure and hydrocarbon accumulation[J].Earth Science Frontiers,1995,2(3/4):137-147.[杜栩,郑洪印,焦秀琼.异常压力与油气分布[J].地学前缘,1995,2(3/4):137-147.]

[2]Osborne M J,Swarbrick R E.Mechanisms for generating overpressure in sedimentary basins:A reevaluation[J].AAPG Bulletin,1997,81(6):1023-1041.]

[3]Song Yan,Xia Xinyu,Hong Feng,et al.Abnormal overpressure distribution and natural gas accumulation in foreland basins,western China[J].Chinese Science Bulletin,2002,47(S1):70-76.[宋岩,夏新宇,洪峰,等.前陆盆地异常压力特征与天然气成藏模式[J].科学通报,2002,47(S1):70-76.]

[4]Zha Ming,Qu Jiangxiu,Zhang Weihai.The relationship between overpressure and reservoir forming mechanism[J].Petroleum Exploration and Development,2002,29(1):19-23.[查明,曲江秀,张卫海.异常压力与油气成藏机理[J].石油勘探与开发,2002,29(1):19-23.]

[5]Guo X W,He S,Liu K Y,et al.Oil generation as the dominant overpressure mechanism in the Cenozoic Dongying Depression,Bohai Bay Basin,China[J].AAPG Bulletin,2010,94(12):1859-1881.

[6]Zhang Fengqi,Wang Zhenliang,Zhao Xuejiao,et al.Genetic mechanism of overpressure and its relationship with hydrocarbon accumulation in Dina-2 Gasfield,Kuqa Depression[J].Acta Petrolei Sinica,2012,33(5):739-747.[张凤奇,王震亮,赵雪娇,等.库车坳陷迪那2气田异常高压成因机制及其与油气成藏的关系[J].石油学报,2012,33(5):739-747.]

[7]Ye Zhi,Fan Honghai,Cai Jun,et al.Investigation and application of a discrimination method for abnormal high formation pressure forming mechanism[J].Journal of China University of Petroleum:Edition of Natural Science,2012,36(3):102-107.[叶志,樊洪海,蔡军,等.一种异常高压形成机制判别方法与应用[J].中国石油大学学报:自然科学版,2012,36(3):102-107.]

[8]Sun Qi,Li Tianyi,Zhou Yan,et al.Characteristics and prediction of overpressure in continental strata,YB area,northeastern Sichuan Basin[J].Petroleum Geology & Experiment,2012,34(6):611-616.[孙琦,李天义,周雁,等.川东北YB地区陆相地层超压特征及压力预测[J].石油实验地质,2012,34(6):611-616.]

[9]Tingay M R P,Morley C K,Laird A,et al.Evidence for overpressure generation by kerogen-to-gas maturation in the northern Malay Basin[J].AAPG Bulletin,2013,97(4):639-672.

[10]Luo X R,Wang Z M,Zhang L Q,et al.Overpressure generation and evolution in a compressional tectonic setting,the southern margin of Junggar Basin,northwestern China[J].AAPG Bulletin,2007,91(8):1123-1139.

[11]Luo Xiaorong.Overpressuring in foreland basins:Geological affects and their efficiency[J].Chinese Journal of Geology,2013,48(1):32-49.[罗晓容.前陆盆地异常流体压力:地质作用及其增压效率[J].地质科学,2013,48(1):32-49.]

[12]Ramdhan A M,Goulty N R.Overpressure and mudrock compaction in the Lower Kutai Basin,Indonesia:A radical reappraisal[J].AAPG Bulletin,2011,95(10):1725-1744.

[13]Grauls D.Overpressures:Causal mechanisms,conventional and hydromechanical approaches[J].Oil & Gas Science and Technology,1999:667-678.

[14]Wan Zhifeng,Xia Bin,He Jiaxiong,et al.Formation mechanism of overpressure and its influence on hydrocarbon accumulation in sedimentary basins[J].Natural Gas Geoscience,2007,18(2):219-222.[万志峰,夏斌,何家雄,等.沉积盆地超压形成机制及其对油气运聚成藏过程的影响[J].天然气地球科学,2007,18(2):219-222.]

[15]Bowers G L.Detecting high overpressure[J].The Leading Edge,2002,21(2):174-177.

[16]Kumar R R,Rao D G.Overpressure Mechanisms in Deep Drilling in Western Offshore India[C].Singapore:AAPG Annual Conference and Exhibition,2012.

[17]Tingay M R P,Hillis R R,Swarbrick R E,et al.Origin of overpressure and pore-pressure prediction in the Baram province,Brunei[J].AAPG Bulletin,2009,93(1):51-74.

[18]Luo Xiaorong.The application of numerical basin modeling in geological studies[J].Petroleum Exploration and Development,2000,27(2):6-10.[罗晓容.数值盆地模拟方法在地质研究中的应用[J].石油勘探与开发,2000,27(2):6-10.]

[19]Wang Zhenliang,Zhang Likuan,Shi Lizhi,et al.Genesis analysis and quantitative evaluation on abnormal high fluid pressure in the Kela 2 Gasfield,Kuqa Depression,Tarim Basin[J].Geological Review,2005,51(1):55-62.[王震亮,张立宽,施立志,等.塔里木盆地克拉2气田异常高压的成因分析及其定量评价[J].地质论评,2005,51(1):55-62.]

[20]Zhu Jianjun,Zhang Xiaobao,Zhang Gongcheng,et al.A Study of abnormal pressure distribution and formation mechanism in Qiongdongnan Basin[J].Natural Gas Geoscience,2011,22(2):444-450.[祝建军,张晓宝,张功成,等.琼东南盆地异常压力分布与形成机理探讨[J].天然气地球科学,2011,22(2):444-450.]

[21]Audet D M,McConnell J D C.Forward modelling of porosity and pore pressure evolution in sedimentary basins[J].Basin Research,1992,(4):147-162.

[22]Luo Xiaorong,Luo Lixin,Li Xueyi,et al.Overpressure distribution and affecting factors in southern margin of Junggar Basin[J].Earth Science:Journal of China University of Geosciences,2004,29(4):404-412.[罗晓容,罗立新,李学义,等.准噶尔盆地南缘中段异常压力分布及影响因素[J].地球科学:中国地质大学学报,2004,29(4):404-412.]

[23]Liu Xiaofeng,Xie Xinong.Review on formation mechanism of the reservoir overpressure fluid system[J].Geological Science and Technology Information,2003,22(3):55-60.[刘晓峰,谢习农.储层超压流体系统的成因机制述评[J].地质科技情报,2003,22(3):55-60.]

[24]Gutierrez M A,Braunsdorf N R,Couzens B A.Calibration and ranking of pore-pressure prediction models[J].The Leading Edge,2006,25:1516-1523.

[25]Yardley G S,Swarbrick R E.Lateral transfer:A source of additional overpressure?[J].Marine and Petroleum Geology,2000,17(4):523-537.

[26]Liu Xiaofeng.Overpressure transference:Concept and ways[J].Petroleum Geology & Experiment,2002,24(6):533-535.[JP][刘晓峰.超压传递:概念和方式[J].石油实验地质,2002,24(6):533-535.]

[27]Luo Xiaorong.Allogenic overpressuring associated with faulting and geological consequences[J].Acta Geologica Sinica,2004,78(5):641-647.[罗晓容.断裂成因他源高压及其地质特征[J].地质学报,2004,78(5):641-647.]

[28]Zhang Fengqi,Wang Zhenliang,Song Yan,et al.The new method of quantitative evaluation on pressurization according to tectonic compression in Kuqa Depression[J].Journal of China University of Petroleum:Edition of Natural Science,2011,35(4):1-7.[张凤奇,王震亮,宋岩,等.库车坳陷构造挤压增压定量评价的新方法[J].中国石油大学学报:自然科学版,2011,35(4):1-7.]

[29]Guo Yingchun,Pang Xiongqi,Chen Dongxia,et al.Evolution of continental formation pressure in the middle part of the Western Sichuan Depression and its significance for hydrocarbon accumulation[J].Petroleum Exploration and Development,2012,39(4):426-433.[郭迎春,庞雄奇,陈冬霞,等.川西坳陷中段陆相地层压力演化及其成藏意义[J].石油勘探与开发,2012,39(4):426-433.]

[30]Luo Xiaorong.Quantitative analysis on overpressuring mechanism resulted from tectonic stress[J].Chinese Journal of Geophysics,2004,47(6):1086-1093.[罗晓容.构造应力超压机制的定量分析[J].地球物理学报,2004,47(6):1086-1093.]

[31]O′Conner S,Swarbrick R E,Lahann R W.Geologically driven pore fluid pressure models and their implications for petroleum exploration:Introduction to thematic set[J].Geofluids,2011,11(4):343-348.

[32]Webster M,O′Connor S,Pindar B,et al.Overpressures in the Taranaki Basin:Distribution,causes,and implications for exploration[J].AAPG Bulletin,2011,95(3):339-370.

[33]Chen Heli,Luo Xiaorong.The quantitative calculation of abnormal fluid pressure in argillaceous and arenaceous rocks and its geological applications[J].Geological Review,1988,34(1):54-63.[陈荷立,罗晓容.砂泥岩中异常高流体压力的定量计算及其地质应用[J].地质论评,1988,34(1):54-63.]

[34]Madon M.Overpressure development in rift basins:An example from the Malay Basin,offshore peninsular Malaysia[J].Petroleum Geoscience,2007,13:169-180.

[35]Liu Zhihong,Lu Huafu,Jia Chengzao,et al.Orogeny timing and fault-slip rate and their significance to the rejuvenated foreland thrusts belt of Kuche[J].Petroleum Exploration and Development,2000,27(1):12-15.[刘志宏,卢华复,贾承造,等.库车再生前陆逆冲带造山运动时间、断层滑移速率的厘定及其意义[J].石油勘探与开发,2000,27(1):12-15.]

[36]Li Yuejun,Wu Genyao,Lei Ganglin,et al.Deformational features ages and mechanism of the Cenonzoic Kuqa foreland fold-and-thrust belt in Xinjiang[J].Chinese Journal of Geology,2008,43(3):488-506.[李曰俊,吴根耀,雷刚林,等.新疆库车新生代前陆褶皱冲断带的变形特征、时代和机制[J].地质科学,2008,43(3):488-506.]

[37]Song Yan,Hong Feng,Xia Xinyu,et al.Syngenesis relationship between abnormal overpressure and gas pool formation:With Kuqa Depression as an example[J].Petroleum Exploration and Development,2006,33(3):303-308.[宋岩,洪峰,夏新宇,等.异常压力与油气藏的同生关系——以库车坳陷为例[J].石油勘探与开发,2006,33(3):303-308.]

[38]He Guangyu,Lu Huafu,Yang Shufeng,et al.Subsiding features of the Mesozoic and Cenozoic Kuqa Basin,northwestern China[J].Journal of Zhejiang University:Science Edition,2004,31(1):110-113.[何光玉,卢华复,杨树锋,等.库车中新生代盆地沉降特征[J].浙江大学学报:理学版,2004,31(1):110-113.]

[39]Yan Wenhao,Li Jianming,Li Dongmei,et al.Geologic characteristics and sedimentary reservoir of Dina 2 Gas field in Kuqa Depression[J].Natural Gas Geoscience,2009,20(1):86-93.[颜文豪,李建明,王冬梅,等.库车坳陷迪那2气田地质特征与沉积储层研究[J].天然气地球科学,2009,20(1):86-93.]

[40]Zeng Lianbo,Tan Chenxuan,Zhang Mingli.Tectonic stress field and its effect on hydrocarbon migration and accumulation in Mesozoic and Cenozoic in the Kuqa Depression,Tarim Basin[J].Science in China:Series D,2004,47(S2):114-124.[曾联波,谭成轩,张明利.塔里木盆地库车坳陷中新生带构造应力场及其油气运聚效应[J].中国科学:D辑,2004,34(S1):98-106.]

 

 
[1] 苏佳纯,张金川,朱伟林. 非常规天然气经济评价对策思考[J]. 天然气地球科学, 2018, 29(5): 743-753.
[2] 王彬, 张强, 吕福亮, 杨涛涛, 杨志力, 孙国忠, 吴敬武, . 南海海域新生界沉积盆地天然气成藏条件及资源前景[J]. 天然气地球科学, 2018, 29(10): 1542-1552.
[3] 张超,张立强,陈家乐,罗红梅,刘书会. 渤海湾盆地东营凹陷古近系细粒沉积岩岩相类型及判别[J]. 天然气地球科学, 2017, 28(5): 713-723.
[4] 殷杰,王权. 利用测井和地震信息识别和预测优质烃源岩——以渤海湾盆地饶阳凹陷沙一段为例[J]. 天然气地球科学, 2017, 28(11): 1761-1770.
[5] 牟炜卫,王琪,田兵,郝乐伟,胡子见. 珠江口盆地白云凹陷北坡中深部储层成岩相测井响应特征[J]. 天然气地球科学, 2017, 28(10): 1601-1612.
[6] 郭秋麟,李峰,陈宁生,郑曼,马忠. 致密油资源评价方法、软件及关键技术[J]. 天然气地球科学, 2016, 27(9): 1566-1575.
[7] 汪剑,崔永谦,史今雄,刘国平,肖阳,曾联波. 沁水盆地南部煤储层裂缝测井响应与参数重构[J]. 天然气地球科学, 2016, 27(11): 2086-2092.
[8] 刘若冰. 中国首个大型页岩气田典型特征[J]. 天然气地球科学, 2015, 26(8): 1488-1498.
[9] 王濡岳,冷济高,丁文龙,龚大建,李飞,孙雅. 上扬子地区下寒武统牛蹄塘组优质页岩储层测井识别——以贵州岑巩页岩气区块为例[J]. 天然气地球科学, 2015, 26(12): 2395-2407.
[10] 杨兆栓,林畅松,尹宏,李浩,王清龙,薛学亚,高达. 主成分分析在塔中地区奥陶系鹰山组碳酸盐岩岩性识别中的应用[J]. 天然气地球科学, 2015, 26(1): 54-59.
[11] 景成,蒲春生,周游,任杨,孙威,张志营. 基于成岩储集相测井响应特征定量评价致密气藏相对优质储层——以SULG东区致密气藏盒8上段成岩储集相为例[J]. 天然气地球科学, 2014, 25(5): 657-664.
[12] 王宏波,姚军,李双文,倪长宽. 利用对应分析法校正火成岩岩性识别图版——以黄骅凹陷为例[J]. 天然气地球科学, 2013, 24(4): 719-724.
[13] 王伟锋,刘鹏,陈晨,王会丽,姜帅,张志超. 页岩气成藏理论及资源评价方法[J]. 天然气地球科学, 2013, 24(3): 429-438.
[14] 邱振,邹才能,李建忠,郭秋麟,吴晓智,侯连华. 非常规油气资源评价进展与未来展望[J]. 天然气地球科学, 2013, 24(2): 238-246.
[15] 杨涛涛,范国章,吕福亮,王彬,吴敬武,鲁银涛. 烃源岩测井响应特征及识别评价方法[J]. 天然气地球科学, 2013, 24(2): 414-422.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!