天然气地球科学

• 非常规天然气 • 上一篇    下一篇

页岩气储层微观孔隙结构特征及发育控制因素——以川南—黔北XX地区龙马溪组为例

魏祥峰,刘若冰 ,张廷山,梁 兴   

  1. 1.中国石化勘探南方分公司,四川 成都 610041;
    2.西南石油大学油气藏地质及开发工程国家重点实验室,四川 成都 610500;
    3.中国石油浙江油田分公司,浙江 杭州 310023
  • 收稿日期:2013-03-20 修回日期:2013-05-07 出版日期:2013-10-10 发布日期:2013-10-10
  • 通讯作者: 魏祥峰weixiangfeng1984@163.com. E-mail:weixiangfeng1984@163.com.
  • 作者简介:魏祥峰(1984-),男,山东济宁人,工程师,博士,主要从事沉积学、非常规油气地质研究. E-mail:weixiangfeng1984@163.com.
  • 基金资助:

    四川省重点学科建设基金项目(编号:SZD0414);博士学科点专项科研基金(优先发展领域)(编号:20125121130001)联合资助.

Micro-pores Structure Characteristics and Development Control Factors  of Shale Gas Reservoir:A Case of Longmaxi Formation in XX Area of Southern Sichuan and Northern Guizhou

WEI Xiang-feng,LIU Ruo-bing ,ZHANG Ting-shan ,LIANG Xing   

  1. 1.SINOPEC Exploration Southern Company,Chengdu 610041,China;
    2.State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,
    Southwest Petroleum University,Chengdu 610500,China;
    3.Zhejiang Oilfield Company of PetroChina,Hangzhou 310023,China
  • Received:2013-03-20 Revised:2013-05-07 Online:2013-10-10 Published:2013-10-10

摘要:

利用扫描电镜以及比表面积分析仪产生的试验数据、吸附脱附曲线对页岩气储层储集空间类型、微观孔隙结构的系统研究表明,川南—黔北XX地区龙马溪组页岩气储层储集空间多样,包括残余原生粒间孔、晶间孔、矿物铸模孔、次生溶蚀孔、黏土矿物间微孔、有机质孔以及构造裂缝、成岩收缩微裂缝、层间页理缝、超压破裂缝等基质孔隙和裂缝类型。发现研究区龙马溪组泥页岩比表面积和孔体积都较大且具有良好的正相关性,并认为微孔隙越发育,泥页岩的比表面积和孔体积越大,越有利于泥页岩对页岩气的吸附储集。建立了泥页岩的孔隙模型,并利用吸附脱附曲线分析了研究区龙马溪组泥页岩的微观孔隙结构特征,指出研究区龙马溪组泥页岩以极为发育的微孔为主,其中为泥页岩提供最大量孔体积和表面积的孔隙主要为Ⅲ类细颈瓶状(墨水瓶状)孔和Ⅰ类开放透气性孔。认为有机碳含量、伊/蒙间层矿物含量以及热演化程度是控制研究区龙马溪组页岩气储层微观孔隙结构的主要因素。

关键词: 页岩气储层, 储集空间类型, 微观孔隙结构, 控制因素, 龙马溪组, 川南&mdash, 黔北XX地区

Abstract:

It is suggested that reservoir spaces of Longmaxi shale gas reservoir in XX area of southern Sichuan and northern Guizhou were diversified,by using of Scanning Electron Microscope (SEM),test data and adsorption/desorption isothermal that produced from Multipoint Brunauer Emmett Teller (MBET) to do research on the types of reservoir spaces and micro-pore structure characteristics of shale gas reservoir.Reservoir spaces mainly include residual primary intergranular pores,intercrystal pores,mineral moldic pores,secondary dissolution pores,micropores among clay minerals,organic matter pores,structural fractures,diagenetic shrink micro-fractures,interlayer lamellation fractures,overpressure breaking fractures and so on.We found out that the pore volume and specific surface area of Longmaxi mud shale is larger and has a good positive correlation,and thought that the more developed the micro-pores were,the bigger the mud shale have the pore volume and specific surface area.It is also beneficial for mud shale to adsorb shale gas.This study established pore models of mud shale,and analyzed micro-pore structure of Longmaxi Formation mud shale.Using adsorption/desorption isothermal,this study also proposed Longmaxi Formation mud shale mainly developed micro-pores,and argued that in those micro-pores,flask (ink-bottle) shaped pores and open air permeability pores supplied the largest pore volume and specific surface area for mud shale.We thought that organic carbon content (TOC),the content of illite/smectite interstratified clay mineral and thermal evolution degree were the major factors to control micro-pores structure of Longmaxi Formation shale gas reservoir in XX area of southern Sichuan and northern Guizhou.
 

Key words: Shale gas reservoir, The types of reservoir spaces, Micro-pore structure characteristics, Controlling factors, Longmaxi Formation, XX area of southern Sichuan and northern Guizhou

中图分类号: 

  • TE132.2
 [1] Schettler Jr P D,Parmely C R,Juniata C.Contributions to Total Storage Capacity in Devonian Shales[C].SPE 23422,1991:77-88.

 [2] Bowker K A.Recent development of the Barnett Shale play,Fort Worth Basin:West Texas[J].Geological Society Bulletin,2003,42(6):1-11.

 [3] Montgomery S L,Jarvie D M,Bowker K A,et al.Missiissippian Barnett shale,Fort Worth Basin,north-central Texas:Gas-shale play with Multitrillion Cubic Foot Potential[J].AAPG Bulletin,2005,89(2):155-175.

 [4] Bowker  K A.Recent developments of the Barnett shale play,Fort Worth Basin[J].West Texas Geological Society Bulletin,2005,42(6):4-11.

 [5] Curtis J B.Fractured shale-gas systems[J].AAPG Bulletion,2002,86(11):1921-1938.

 [6] Wang Xiang,Liu Yuhua,Zhang Min,et al.Conditions of formation and accumulation for shale gas[J].Natural Gas Geoscience,2010,21(2):350-356.[王祥,刘玉华,张敏,等.页岩气形成条件及成藏影响因素研究[J].天然气地球科学,2010,21(2):350-356.]

 [7] Wang Feiyu,He Zhiyong,Meng Xiaohui,et al.Occurrence of shale gas and prediction of original gas In-place(OGIP) [J].Natural Gas Geoscience,2011,22(3):501-510.[王飞宇,贺志勇,孟晓辉,等.页岩气赋存形式和初始原地气量( OGIP) 预测技术[J].天然气地球科学,2011,22(3):501-510.]

 [8] Ambrose Ray J,Hartman Robert C,Diaz-Campos Mery,et al.New Pore-scale Considerations for Shale Gas in Place Calculations[C].SPE 131772,2010:1-17.

 [9] Chen Shangbin,Zhu Yanming,Wang Hongyan,et al.Structure characteristics and accumulation significance of nanopores in Longmaxi shale gas reservoir in the southern Sichuan Basin[J].Journal of China Coal Society,2012,37(3):438-444.[陈尚斌,朱炎铭,王红岩,等.川南龙马溪组页岩气储层纳米孔隙结构特征及其成藏意义[J].煤炭学报,2012,37(3):438-444.]

[10] Bustin R M,Bustin A M M,Cui X,et al.Impact of Shale Properties on Pore Structure and Storage Characteristics[C].SPE 119892,2008.

[11] Ji Liming,Qiu Junli,Xia Yanqing,et al.Micro-pore characteristics and methane adsorption properties of common clay minerals by electron microscope scanning[J].Acta Petrolei Sinica,2012,33(2):249-256.[吉利明,邱军利,夏燕青,等.常见黏土矿物电镜扫描微孔隙特征与甲烷吸附性[J].石油学报,2012,33(2):249-256.]

[12] Jarvie D M,Hill R J,Ruble T E,et al.Unconventional shale-gas systems:The Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment[J].AAPG Bulletin,2007,91(4):475-499.

[13] Du Yu′e.The Affect about Pore Characteristics of Coal to the Coal-bed Methane Desorption[D].Xi′an:Xi′an University of Science and Technology,2010.[杜玉娥.煤的孔隙特征对煤层气解吸的影响[D].西安:西安科技大学,2010.]

[14] Kang S M,Fathi E,Ambrose R J,et al.Carbon Dioxide Storage Capacity of Organic-rich Shales[C].SPE 134583,2010:1-17.

[15] Ross D J K,Bustin R M.Characterizing the shale gas resource potential of Devonian Mississippian strata in the western Canada sedimentary basin:Application of an integrated formation evalution[J].AAPG Bulletin,2008,92(1):87-125.

[16] Zhao Xingyuan,Zhang Youyu.Clay Minerals and Analsis of Clay Minerals[M].Beijing:Ocean Press,1990:43-44.[赵杏媛,张有瑜.黏土矿物与黏土矿物分析[M].北京:海洋出版社,1990:43-44.]

[17] Passey Q R,Bohacs K M,Esch W L,et al.From Oil-prone Source Rock to Gas-producing Shale Reservoir:Geologic and Petrophysical Characterization of Uniconventional Shale-gas Reservoirs[C].SPE 131350,2010.

[18] Hoffman J,Hower J.Clay mineral assemblages as low grade metamorphic geothermometers application to the thrust faulted disturbed belt of Montana\[M\]//Scholle P A,Schluger P S.eds.Aspects of Diagenesis,Society of Economic Paleontologists and Mineralogists Special Publication,1979,26:55-80.[JP]

[19] Nadeau PH,Reynolds Jr R C.Burial and contact metamorphism in the Mancos shale[J].Clays and Clay Minerals,1981,29:249-259.

[20] Arkai P.Chlorite crystallinity:an empirical approach and correlation with illite crystallinity,coal rank andmineral facies as exemplified by Palaeozoic and Mesozoic rocks of north east Hungary[J].Jour Metamorphic Geol,1991,9:23-734.

[21] Zhao Mengwei.The indicators and boundary for separating diagenesis from burial metamorphism[J].Gological Review,1995,41(3):238-244.[赵孟为.划分成岩作用与埋藏变质作用的指标及其界线[J].地质论评,1995,41(3):238-244.]

[22] Ji J F,Browne P R L.Relationship between illite crystallinity and temperature in active geothermal system of New Zealand[J].Clays and Clay Minerals,2000,48(1):139-144.

[23] Xiao Lihua,Meng Yuanlin,Niu Jiayu,et al.Diagenetic history and diagenetic stages′prediction of Shahejie Formation in the Qikou Sag[J].Chinese Journal of Geology,2005,40(3):346-362.[肖丽华,孟元林,牛嘉玉,等.歧口凹陷沙河街组成岩史分析和成岩阶段预测[J].地质科学,2005,40(3):346-362.]

[24] Liu Weixin,Wang Yanbin,Qin Jianzhong,et al.Characteristics of the Triassic clay minerals in Aba area,Northern Sichuan,and its geological implications[J].Chinese Journal of Geology,2007,42(3):469-482.[刘伟新,王延斌,秦建中.川北阿坝地区三叠系黏土矿物特征及地质意义[J].地质科学,2007,42(3):469-482.]



 
[1] 赵文韬,荆铁亚,吴斌,周游,熊鑫. 断裂对页岩气保存条件的影响机制——以渝东南地区五峰组—龙马溪组为例[J]. 天然气地球科学, 2018, 29(9): 1333-1344.
[2] 朱立文,王震亮,张洪辉. 鄂尔多斯盆地乌审召地区山2亚段致密气“甜点”控因分析[J]. 天然气地球科学, 2018, 29(8): 1085-1093.
[3] 王朋飞,姜振学,吕鹏,金璨,李鑫,黄璞. 重庆周缘下志留统龙马溪组和下寒武统牛蹄塘组页岩有机质孔隙发育及演化特征[J]. 天然气地球科学, 2018, 29(7): 997-1008.
[4] 邱 振,邹才能,李熙喆,王红岩,董大忠,卢斌,周尚文,施振生,冯子齐,张梦琪. 论笔石对页岩气源储的贡献——以华南地区五峰组—龙马溪组笔石页岩为例[J]. 天然气地球科学, 2018, 29(5): 606-615.
[5] 王涛利,郝爱胜,陈清,李,王庆涛,卢鸿,刘大永. 中扬子宜昌地区五峰组和龙马溪组页岩发育主控因素[J]. 天然气地球科学, 2018, 29(5): 616-631.
[6] 王国龙,杜社宽. 准噶尔盆地北三台凸起二叠系梧桐沟组一段碎屑岩储层特征及控制因素[J]. 天然气地球科学, 2018, 29(5): 675-681.
[7] 龙胜祥,冯动军,李凤霞,杜伟. 四川盆地南部深层海相页岩气勘探开发前景[J]. 天然气地球科学, 2018, 29(4): 443-451.
[8] 胡向阳,李宏涛,史云清,肖开华,郭艳东,李浩,高君. 川西坳陷斜坡带蓬莱镇组三段沉积特征与储层分布——以什邡地区JP32砂组为例[J]. 天然气地球科学, 2018, 29(4): 468-480.
[9] 王宏坤,吕修祥,王玉满,慕瑄,张琰,钱文文,陈佩佩. 鄂西下志留统龙马溪组页岩储集特征[J]. 天然气地球科学, 2018, 29(3): 415-423.
[10] 杨文新,李继庆,苟群芳. 四川盆地焦石坝地区页岩吸附特征室内实验[J]. 天然气地球科学, 2017, 28(9): 1350-1355.
[11] 任丽华,代俊杰,林承焰,曹铮. 松辽盆地扶新隆起带南部青山口组超压特征及油气地质意义[J]. 天然气地球科学, 2017, 28(7): 1020-1030.
[12] 韩元红,范明,申宝剑,俞凌杰,杨振恒,钱门辉. 富有机质页岩解吸气地球化学特征及其指示意义[J]. 天然气地球科学, 2017, 28(7): 1065-1071.
[13] 熊连桥,姚根顺,倪超,熊绍云,沈安江,周刚,郝毅. 川西北地区中泥盆统观雾山组储集层特征、控制因素与演化[J]. 天然气地球科学, 2017, 28(7): 1031-1042.
[14] 张大智. 利用氮气吸附实验分析致密砂岩储层微观孔隙结构特征——以松辽盆地徐家围子断陷沙河子组为例[J]. 天然气地球科学, 2017, 28(6): 898-908.
[15] 刘英杰,黄传炎,岳家恒,郭来源. 陆相湖盆层序地层格架内有机质发育及控制因素分析——以中上扬子建南地区侏罗系东岳庙段为例[J]. 天然气地球科学, 2017, 28(6): 930-938.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!