天然气地球科学 ›› 2012, Vol. 23 ›› Issue (1): 19–25.doi: 10.11764/j.issn.1672-1926.2012.01.19

• 非常规天然气 • 上一篇    下一篇

温度梯度对粗砂中甲烷水合物形成和分解过程的影响及电阻率响应

 王英梅, 吴青柏, 蒲毅彬, 展静   

  1. 中国科学院寒区旱区环境与工程研究所冻土工程国家重点实验室,甘肃 兰州 730000
  • 收稿日期:2011-09-06 修回日期:2011-11-01 出版日期:2012-02-10 发布日期:2012-02-10
  • 通讯作者: 王英梅wymch@lzb.ac.cn. E-mail:wymch@lzb.ac.cn.
  • 作者简介:王英梅(1978-),女,青海西宁人,博士研究生,主要从事冻土区天然气水合物研究.E-mail:wymch@lzb.ac.cn.
  • 基金资助:

    中国科学院西部行动计划项目(编号:KZCX2-XB3-03);中国科学院重要方向项目(编号:KZCX2-YW-330)联合资助.

Effect of Temperature Gradient on Process of Methane Hydrate  Formation-dissociation and Its Resistivity Changes in Coarse Sand

 WANG  Yang-Mei, WU Qing-Bai, PU Yi-Ban, ZHAN  Jing   

  1. The State Key Laboratory of Frozen Soil Engineering,Cold and Arid Regions Environmental and Engineering Research Institute,Chinese Academy of Sciences,Lanzhou 730000,China
  • Received:2011-09-06 Revised:2011-11-01 Online:2012-02-10 Published:2012-02-10

摘要:

评价甲烷水合物形成和分解过程中电阻率的变化对多年冻土区天然气水合物的勘测具有重要意义。利用本实验室自主研发设计的测量冻土相变温度和电阻率分布的装置,研究温度梯度对粗砂中甲烷水合物形成和分解过程的影响以及在此过程中的电阻率响应。实验表明,该装置可以准确有效地探测出水合物成核、形成、聚集及分解的过程。同时温度梯度的大小对多孔介质中水合物的形成和分布具有很大影响,随着温度梯度的增大,水合物的分布越不均匀,在高温端富集的水合物越多,水合物发生富集的时间间隔就越短。随着反应过程中水合物饱和度的增大,电阻率随之也增大.

关键词: 甲烷水合物, 温度梯度, 电阻率, 粗砂, 饱和度

Abstract:

It is important for methane hydrate exploration in the permafrost region to evaluate the resistivity changes during the process of methane hydrate formation and decomposition of gas hydrate.In this paper,we use the devices of frozen phase transition temperature and resistivity distribution which are self designed to elucidate the methane hydrate formation and decomposition process in the coarse sand.The experimental results show that the processes of hydrate nucleation,formation,aggregation and decomposition can be detected accurately and efficiently by the experimental devices.The differences temperature gradients obviously influence the formation and distribution of the methane hydrate in the coarse sand.With increase of temperature gradient,the distribution of the methane hydrate becomes uneven.The methane hydrate is aggregated more easily at the apex of high-temperature while the time interval of the hydrate aggregation is shorter.The resistivity of the samples increased with increase of hydrate saturation.

Key words: Methane hydrate, Temperature gradient, Resistivity, Coarse sand, Hydrate saturation.

中图分类号: 

  • TE132.2

[1]Wang Shuhong,Song Haibin,Yan Wen.The change of external conditions effects on the phase equilibrium curve of gas hydrate and the thickness of hydrate stability zone[J].Chinese Journal Geophysics,2005,20(3):761-768.[王淑红,宋海斌,颜文.外界条件变化对天然气水合物相平衡曲线及稳定带厚度的影响[J].地球物理学进展,2005,20(3):761-768.]
[2]Bower P G.Deep ocean field tests of methane hydrate formation from a remotely operated vehicle[J].Geology,1997,25:407-410.
[3]Chuvilin E M,Yakushev V S,Perlova E V.Experimental study of gas hydrate formation in porous media[J].Vniigan,1999,9:431-440.
[4]Wu Baoxiang,Duan Yi,Lei Huaiyan,et al.Filling rates of methane hydrate in water-sediment system[J].Natural Gas Industry,2004,24(8):27-29.[吴保祥,段毅,雷怀彦,等.水+沉积物体系中CH4水合物的填充率[J].天然气工业,2004,24(8):27-29.]
[5]Chen Min,Cao Zhimin,Ye Yuguang.Experimental technology on elemental geochemical study during the formation of marine gas hydrates[J].Acta Oceanologica Sinica,2006,28(6):39-43.[陈敏,曹志敏,业渝光.海洋天然气水合物合成的模拟实验研究[J].海洋学报,2006,28(6):39-43.]
[6]Hyndman R D,Yuan T,Mo ran K.The concentration of deep sea gas hydrates from down hole electrical resistivity logs and laboratory data[J].Earth and Planetary Science Letters,1999,172: 167-177.
[7]Pearson C F,Halleck P M,McGuire P L.Natural gas hydrate: A review of in situ properties[J].Journal of Physical Chemistry,1983,87:4180-4185.
[8]Spangenberg E,Kulenkampff J.Influence of methane hydrate contention electrical sediment properties[J].Geophysical Research Letters,2006,33: 243-251.
[9]Buffett B A,Zatsepina O Y.Experiment study of the stability of CO2-hydrate in a porous medium[J].Fluid Phase Equilibria,2001,192:85-102.
[10]Zatsepina O Y,Buffett B A.Nucleation of CO2-hydrate in a porous medium[J].Fluid Phase Equilibria,2002,5012:1-13.
[11]Zhou Xitang,Fan Shuanshi,Liang Deqing.Deteching formation and decomposition of NGH by measuring conductivity[J].Natural Gas Geoscience,2007,18(4):593-595.[周锡堂,樊栓狮,梁德青.用电导性监测天然气水合物的形成和分解[J].天然气地球科学,2007,18(4):593-595.]
[12]Zhao Hongwei,Diao Shaobo,Ye Yuguang,et al.Technique of detecting impedance of hydrate in porous medium[J].Marine Geology & Quaternary Geology,2005,25(1):137-142.[赵宏伟,刁少波,业渝光,等.多孔介质中水合物阻抗探测技术[J].海洋地质与第四纪地质,2005,25(1):137-142.]
[13]Chen Qiang,Ye Yuguang,Meng Qingguo,et al.Simulation experiment of the relationship between CO2 hydrate saturation and resistance in porous media[J].Natural Gas Geoscience,2009,20(2):249-253.[陈强,业渝光,孟庆国,等.多孔介质中CO2水合物饱和度与阻抗关系模拟实验研究[J].天然气地球科学,2009,20(2):249-253.]
[14]Stern L A,Kirby S H.Scanning electron microscopy investigations of laboratory-grown gas clathrate hydrates formed from melting ice,and comparison to natural hydrates[J].American Mineralogist,2004,89:1162-1175.
[15]Wang Yingmei,Wu Qingbai,Zhang Peng,et al.Experimental study on the isobaric decomposition of methane hydrate
[J].Natural  Gas  Geoscience,2009,20(2):244-248.
[ 王英梅,吴青柏,张鹏,等,冰点以下甲烷水合物等压分解实验研究
[J].天然气地球科学,2009,20(2) :244-248.]
[16]Wu Qingbai,Pu Yibin,Jiang Guanli.Experimental research of formation and decomposition processes of methane hydrate by computerized tomography[J].Progress in Natural Science,2006,16(1):61-65.[吴青柏,蒲毅彬,蒋观利.X射线断层扫描系统研究CH4水合物形成和分解过程[J].自然科学进展.2006,16(1):61-65.]
[17]Zhang Peng,Wu Qingbai,Wang Yingmei.Water characteristics inside loess during formation and dissociation processes of methane hydrate
[J].Natural Gas Geoscience,2009,20(4):616-619,626.
[张鹏,吴青柏,王英梅.粉土内甲烷水合物形成与分解过程中的水分特征
[J].天然气地球科学,2009,20(4):616-619,626.]
[18]Li Shuxia,Chen Yueming,Wang Ruihe,et al.On the influence of initial pressure on natural gas hydrate formation in a porous medium[J].Journal of Experimental Mechanics,2009,24(4):313-319.[李淑霞,陈月明,王瑞和,等,初始压力对多孔介质中气体水合物生成的影响[J].实验力学,2009,24(4):313-319.]
[19]Chen Xinzhi,Cai Zhengyun,Hu Wangming,et al.Chemical Engineering Thermodynamics:First Edition[M].Beijing:Chemical Industry Press,2009:43-44.[陈新志,蔡振云,胡望明,等.化工热力学:第一版[M].北京:化学工业出版社,2009:43-44.]
[20]Chen Qiang,Liu Changling,Ye Yuguang.Preliminary research about the nucleation of gas hydrate in porous media[J].Acta Petrolei Sinica:Petroleum Processing Section,2008,24(3):345-349.[陈强,刘昌岭,业渝光.多孔介质中气体水合物的成核研究[J].石油学报:石油加工,2008,24(3):345-349.]

[1] 滕龙,殷启春,方朝刚,郑红军,沈雪华,朱红兵,陈基炜. 利用高密度电阻率法预测第四系浅层生物气——以江苏省南通地区为例[J]. 天然气地球科学, 2018, 29(5): 719-728.
[2] 姜黎明,余春昊,齐宝权,朱涵斌,王勇军. 孔洞型碳酸盐岩储层饱和度建模新方法及应用[J]. 天然气地球科学, 2017, 28(8): 1250-1256.
[3] 张涛,李相方,王永辉,石军太,杨立峰,孙政,杨剑,张增华. 页岩储层特殊性质对压裂液返排率和产能的影响[J]. 天然气地球科学, 2017, 28(6): 828-838.
[4] 何胜林,张海荣,杨冬,吴一雄,吴进波. 高温高压条件下不同气体组分储层岩电实验及应用[J]. 天然气地球科学, 2017, 28(4): 575-581.
[5] 刘洁,张建中,孙运宝,赵铁虎. 南海神狐海域天然气水合物储层参数测井评价[J]. 天然气地球科学, 2017, 28(1): 164-172.
[6] 陶士振,高晓辉,李昌伟,曾溅辉,张响响,杨春,张婧雅,公言杰. 煤系致密砂岩气渗流机理实验模拟研究——以四川盆地上三叠统须家河组煤系致密砂岩气为例[J]. 天然气地球科学, 2016, 27(7): 1143-1152.
[7] 韩文学,陶士振,姚泾利,麻伟娇. 鄂尔多斯盆地陇东地区长7段致密储层精细表征[J]. 天然气地球科学, 2016, 27(5): 820-826.
[8] 陈金龙,黄志龙,高潇玉,刘国恒,陈常超,吕昕鹏,陈晨. 页岩含气量定量计算方法探讨——以吐哈盆地温吉桑地区中下侏罗统为例[J]. 天然气地球科学, 2016, 27(4): 727-738.
[9] 刘洪林,王红岩,孙莎莎,吝文. 南方海相页岩气超压特征及主要选区指标研究[J]. 天然气地球科学, 2016, 27(3): 417-422.
[10] 张冲,张超谟,张占松,秦瑞宝,余杰. 致密气储层岩心束缚水饱和度实验对比[J]. 天然气地球科学, 2016, 27(2): 352-358.
[11] 公言杰,柳少波,赵孟军,姜林,高晓辉. 油水同层型致密油原始含油饱和度实验测定新方法及实例应用[J]. 天然气地球科学, 2016, 27(12): 2154-2159.
[12] 胡勇,徐轩,李进步,王继平,朱秋影,谢坤,石林辉. 砂岩气藏充注含气饱和度实验研究[J]. 天然气地球科学, 2016, 27(11): 1979-1984.
[13] 彭真,秦臻,潘和平,纪扬,郭博,徐伟,孙立洲. 杭锦旗地区低阻气层成因及测井评价方法[J]. 天然气地球科学, 2016, 27(11): 2054-2063.
[14] 吴萧,韩杰,朱永峰,刘俊锋. 塔里木盆地轮古东油气相态和饱和度特征及其主控因素分析[J]. 天然气地球科学, 2016, 27(1): 30-40.
[15] 尹帅,丁文龙,黄昌杰,肖子亢,周学慧. 非饱和致密砂岩储层含气饱和度测井评价[J]. 天然气地球科学, 2016, 27(1): 156-165.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!