天然气地球科学 ›› 2008, Vol. 19 ›› Issue (4): 577–580.doi: 10.11764/j.issn.1672-1926.2008.04.577

• 天然气水合物 • 上一篇    

冰颗粒粒径对冰点以下甲烷水合物自保护效应的影响

 展静, 吴青柏, 蒋观利   

  1. (中国科学院寒区旱区环境与工程研究所冻土工程国家重点实验室,甘肃 兰州 730000)
  • 出版日期:2008-04-20 发布日期:2008-04-20
  • 作者简介:第一作者 E-mail:zhangjing@lzb.ac.cn
  • 基金资助:

    国家自然科学基金项目(编号:4047006);国家自然科学基础人才培养基金冰川冻土学特殊学科点(编号:J0630966)

Effect of Particle Size of Ice on Methane Hydrate Self-Preservation below Freezing Point

 ZHAN  Jing, TUN  Jing-Bai, JIANG  Guan-Li   

  1. (State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environmental and Engineering Research Institute,Chinese Academy of Sciences, Lanzhou 730000 China)
  • Online:2008-04-20 Published:2008-04-20

摘要:

针对冰颗粒粒径对甲烷水合物自保护效应的影响问题,开展了6种冰颗粒粒径和2个温度条件下的甲烷水合物分解实验,分析了不同粒径的冰颗粒对甲烷水合物分解气体体积、分解速率及对甲烷水合物自保护效应的影响。结果表明,冰颗粒的大小对甲烷水合物的分解有明显的影响,甲烷水合物分解速率和体积与冰粒径成反比,冰颗粒越小,甲烷水合物分解速率越大,这一特征在甲烷水合物的分解初期表现得尤为显著;较大冰颗粒所形成的甲烷水合物具有更强的自保护效应。

关键词: 甲烷水合物, 自保护效应, 分解, 粒径

Abstract:

To study the impacts of the ice particle size on the self preservation of methane hydrate, the dissociation experiment of methane hydrates were carried out. It contains six different sizes of ice particles under two different temperatures, aiming at analyzing the impacts of the total release volume of methane and the dissociation rate on the self preservation time. The results show that the size of the ice particle had evident impacts on the dissociation of methane hydrates. The total release volume of methane and the dissociation rate were inversely proportional to the ice particle size, the smaller the ice particle size, the faster the dissociation rate. This feature was very remarkable at the beginning of the dissociation. And, the methane hydrate formed by the bigger size of ice particle had more effective self\|preservation.


Key words: Methane hydrate, Self preservation, Dissociation, Particle size.

[1]Sloan E D.Clathrate Hydrate of Natural Gases[M].2nd ed. New York:Marcel Dekker Inc,1998.
[2] Yakushev V S, Istomin V A. Gas-hydrate self-preservation effect
[M]//Maeno N, Hondoh T.Physics and Chemistry of Ice. Sapporo:Hokkaido University Press,1992:136-139.
[3]Handa Y,Stupin D.Thermodynamic properties and dissociation characteristics of methane and propane hydrates in 70--radius silica gel porest
[J].Phyical Chemistry,1992,96:8599-8603.
[4] Davidson D, Garg S, Gough S, Handa Y,et al. Laboratory analysis of a naturally occurring gas hydrate from sediment of the Gulf of Mexico
[J]. Geochim Cosmochim  Acta, 1986, 50:619-623.
[5] Handa Y P. Compositions, enthalpies of dissociation, and heat capacities in the range 85 to 270 K for clathrate hydrates of methane, ethane, and propane, and enthalpy of dissociation of isobutane hydrate, as determined by a heat-flow calorimeter
[J]. Chemical Thermodynamics, 1986, 18: 915-921.
[6]Gudmundsson J S, Parlaktuna M, Levik O I, et al. Laboratory for Continuous Production of Natural Gas Hydrates
[C]. Annals of the New York Academy of Sciences,2000:912,851.
[7] Stern L A, Circone S, Kirby S H,et al. Anomalous preservation of pure methane hydrate at 1 atm
[J]. Journal of Physical Chemistry B, 2001, 105, 1756-1762. [8] Shirota H, Aya I, Namie S, et al. Measurement of methane hydrate dissociation for application to natural gas storage and transportation
[C]//Proceedings of the Fourth International Conference on Gas Hydrates, Yokohama, Japan, 2002:972-977.
[9]林微,陈光进.气体水合物分解动力学研究现状
[J].过程工程学报,2004,4(1):69-74.
[10] Peters D J. A Study of Hydrate Dissociation in Pipelines by the Method of Two-Sided Depressurization:Eperiment and Model
[D].Master of Science Thesis, Colorado School of Mines.1999.

 

[1] 艾志久,王杰. 天然气水合物分解的动力学模型研究[J]. 天然气地球科学, 2017, 28(3): 377-382.
[2] 康毅力,陈益滨,李相臣,游利军,陈明君. 页岩粒径对甲烷吸附性能影响[J]. 天然气地球科学, 2017, 28(2): 272-279.
[3] 田仁飞,杨春峰,胡宇,杨振峰,李秋菊. 识别岩性油藏薄储集层的谱分解技术[J]. 天然气地球科学, 2015, 26(2): 360-366.
[4] 蔡涵鹏,龙浩,贺振华,李亚林,邓吉刚,何光明,邹文. 基于地震数据瞬时相位谱的地层厚度估算[J]. 天然气地球科学, 2014, 25(4): 574-581.
[5] 蒋观利,吴青柏,杨玉忠,展静. 砂土中不同产状甲烷水合物形成和分解过程研究[J]. 天然气地球科学, 2013, 24(6): 1305-1310.
[6] 张鹏,吴青柏,蒋观利,董兰凤. 不同颗粒介质内甲烷水合物形成反应特征[J]. 天然气地球科学, 2013, 24(2): 265-272.
[7] 畅永刚,史松群,赵玉华,王大兴. 基于SVD法三维地震属性优化技术在苏里格气田含气性预测中的应用[J]. 天然气地球科学, 2012, 23(3): 596-601.
[8] 展静, 吴青柏, 杨玉忠. 冰点以下甲烷水合物分解实验对天然气储运的影响[J]. 天然气地球科学, 2012, 23(2): 348-352.
[9] 王英梅, 吴青柏, 蒲毅彬, 展静. 温度梯度对粗砂中甲烷水合物形成和分解过程的影响及电阻率响应[J]. 天然气地球科学, 2012, 23(1): 19-25.
[10] 蒋观利,吴青柏,展静. 降温速率和粒径对砂土中甲烷水合物形成过程影响研究[J]. 天然气地球科学, 2011, 22(5): 920-925.
[11] 高倩, 李仲东, 赵爽. 基于子波分解的含气性识别技术在CC地区浅层气藏勘探中的应用[J]. 天然气地球科学, 2011, 22(3): 549-553.
[12] 陈胜红, 贺振华, 朱明, 汪瑞良, 陈雪芳, 文晓涛, 姜建, 曾驿. 基于EMD和近似熵的储层预测[J]. 天然气地球科学, 2010, 21(5): 828-832.
[13] 郭淑文, 程然, 祝文亮, 肖敦清, 牟智全. 数据挖掘技术在地震属性降维中的应用[J]. 天然气地球科学, 2010, 21(4): 670-677.
[14] 张鹏, 吴青柏, 蒋观利. 降温速率对零度以上介质内甲烷水合物形成的影响[J]. 天然气地球科学, 2009, 20(6): 1000-1004.
[15] 张鹏, 吴青柏, 王英梅. 粉土内甲烷水合物形成与分解过程中的水分特征[J]. 天然气地球科学, 2009, 20(4): 616-619,626.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!