天然气地球科学 ›› 2009, Vol. 20 ›› Issue (1): 20–25.doi: 10.11764/j.issn.1672-1926.2009.01.20

• 天然气地球化学 • 上一篇    下一篇

依据热模拟实验动态建立煤成烃模式

刘全有 刘文汇 王长华   

  1. 1.中国石化石油勘探开发研究院,北京 100083;2.东营市勘察测绘院,山东 东营 257091
  • 收稿日期:2008-09-09 修回日期:2009-01-19 出版日期:2009-02-10 发布日期:2009-02-10
  • 通讯作者: 刘全有qyouliu@sohu.com E-mail:qyouliu@sohu.com
  • 基金资助:

    国家自然科学基金(编号:40802028);重点基础研究发展规划项目(编号:2005CB422108)联合资助

Mathematical Simulation of Coal-generating Hydrocarbons Based on Pyrolysis Products from Coal Macerals under Closed System

 LIU Quan-You, LIU Wen-Hui, WANG Chang-Hua   

  1. 1.Exploration and Production Research Institute, SINOPEC, Beijing 100083, China;
        2.Prospecting and Surveying Institute of Dongying City, Dongying 257091,China
  • Received:2008-09-09 Revised:2009-01-19 Online:2009-02-10 Published:2009-02-10

摘要:

依据构成煤岩端元组分(壳质组、镜质组和惰质组)热模拟实验的生烃潜力和甲烷同位素组成数据,结合已建立的煤成油有效排出门限(30 mg/gTOC),建立了煤成烃模式,该模式表明:只有富氢的显微组分才有利于煤岩生油,且壳质组含量最低为5.0%,而镜质组最高含量为95.0%;当壳质组含量高于22.9%时,煤成油不受镜质组和惰质组二端元组成的影响。同时,按照煤成烃模式计算了不同端元组分在不同热演化阶段甲烷碳同位素组成的变化,结果表明:构成煤岩的显微组分含量能够引起烷烃气碳同位素组成的变化;在同一热演化阶段,甲烷碳同位素组成最大差异可达2.3‰。认为煤成气甲烷碳同位素组成不仅受热成熟度控制,而且也受煤岩显微组分相对含量的影响。

关键词: 显微组分, 生烃潜力, 碳同位素组成, 生烃模式

Abstract:

Based on the hydrocarbon yields and carbon isotopes of methane from the three end-member macerals (vitrinite, exinite, inertinite) under closed system pyrolysis, isothermal temperature conditions, a mathematic model of oil generation and efficient expulsion from coal as a hydrocarbon-sourcing rock was done when the efficient expulsion of hydrocarbons from coal is experientially assumed to be 30 mg/gTOC.According to the simulated results, the hydrogen enriched maceral is prone to the oil generation, where the relative proportion of exinite component in coal as an active oil source is at least 5.0% whereas vitrinite is at most 95.0%. If the exinite content is more than 22.9% of coal components, the oil is generated and efficiently expelled from coal whatever the contents of two other macerals (vitrinite and inertinite). Meanwhile, the carbon isotope fractionation of methane from the maceral components at thermal stages was matched according to the simulated model. These mathematically calculated observations imply that coals with the different end\|member macerals would generate natural gas with changed δ13CCH4 values, where the maximum δ13CCH4 value  is  2.3‰. Thus, the δ13CCH4 value is constrained by not only thermal maturity of source rock, but also maceral components.

Key words: Macerals, Hydrocarbon yield, Carbon isotope, Mathematic model.

中图分类号: 

  • TE122.1+13

    [1]  王祥,张敏,黄兴辉.典型海相油和典型煤成油轻烃组成特征及地球化学意义[J].天然气地球科学,2008,19(1):18 -22.
 [2] 程克明.吐哈盆地煤成油气的地质地球化学研究[J].勘探家,1997,2(2):5 -10.
 [3] 黄第藩,秦匡宗,王铁冠,等.煤成油的形成和成烃机理[M].北京:石油工业出版社,1995.
 [4] Durand B,Paratte M.Oil potential of coals:A geochemical Approach\[M\]//Petroleum Geochemistry and Exploration of Europe.Oxford:Blackwell Scientific,1983:255 -265.
 [5] Bertrand P,Behar F,Durand B.Composition of potential oil from humic coals in relation to their petrographic nature[J].Organic Geochemistry,1986,10(1 -3):601 -608.
 [6] Boreham C J,Powell T G.Variation in pyrolysate composition of sediments from the Jurassic Walloon coal measures,eastern Australia as a function of thermal maturation[J].Organic Geochemistry,1991,17(6):723 -733.
 [7] Littke R,Leythaeuser D.Migration of oil and gas in coals[J].AAPG Bulletin,2001,38:219 -236.
 [8] Bechtel A,Gruber W,Sachsenhofer R F,et al.Organic geochemical and stable carbon isotopic investigation of coals Formed in low -lying and raised mires within the eastern Alps(Austria)[J].Organic Geochemistry,2001,32(11):1289 -1310.
 [9] Brook J D,Smith J W.The diagenesis of plant lipids during the formation of coal,petroleum and natural gas,Ⅱ:Coalification and formation of oil and gas in the Gippsland Basin[J].Geochimica et Cosmochimica Acta,1969,33:1183 -1194.
[10] Killops S D,Woolhouse A D,Weston R J,et al.A geochemical appraisal of oil generation in the Taranaki Basin,New Zealand[J].AAPG Bulletin,1994,78:1560 -1585.
[11] Peters K E,Snedden J W,Sulaeman A,et al.A new geochemical -sequence stratigraphic model for the Mahakam delta and Makassar slop,Kalimantan Indonesia[J].AAPG Bulletin,1999,83:1332 -1333.
[12] Petersen H I,Rosenberg P,Andsbjerg J.Organic geochemistry in relation to the depositional environments of middle Jurassic coal seams,Danish central graben,and implications for hydrocarbon generative potential[J].AAPG Bulletin,1996,80(1):47 -62.
[13] 戴金星.加强天然气地学研究[KG*2]勘探更多大气田[J].天然气地球科学,2003,14(1):3 -14.
[14] Liu Q,Liu W,Dai J.Characterization of pyrolysates from maceral Components of Tarim coals in closed system experiments and implications to natural gas generation[J].Organic Geochemistry,2007,38(6):921 -934.
[15] 刘全有,刘文汇,孟仟祥.塔里木盆地煤岩在不同介质条件下热模拟实验中烷烃系列有机地球化学特征[J].天然气地球科学,2006,17(3):313 -318.
[16] Liu Q,Liu W.The influence of CO in the carbon isotopic composition of CH4 in closed system pyrolysis experiment with coal[J].Chinese Journal of Geochemistry,2004,23(4):359 -365.
[17] 刘全有,刘文汇,宋岩,等.塔里木盆地煤岩显微组分热模拟实验中液态烃特征研究[J].天然气地球科学,2004,15(3):297 -301.
[18] Powell T G,Boreham C J.Petroleum generation and source rock assessment in terrigenous sequences:an updata[J].Australian Petroleum Exploration Association Journal,1991,31(1):297 -311.
[19] Wilkins R W T,George S C.Coal as a source rock for oil:A review[J].International Journal of Coal Geology,2005,50(1 -4):317 -361.
[20] Powell T G.Development in Concepts of Hydrogen Generation from Terrestrial Organic Matter:Petroleum Resources of China and Related Subjects[M].Texas:Earth Science Series,1988.
[21] Boreham C J,Powell T G.Petroleum source rocks potential of coal and associated sediments:qualitative and quantitative aspects[M]//Hydrocarbons from Coal.Tulas,USA.AAPG Studies in Geology 38,133 -157.
[22] Boreham C J,Horsfield B,Schenk H J.Predicting the quantities of oil and gas generated from australian permian coals,Bowen basin using pyrolytic methods[J].Marine and Petroleum Geology,1999,16(2):165 -188.
[23] 戴金星,陈践发,钟宁宁,等.中国大气田及其气源[M].北京:科学出版社,2003.
[24] 张梅,王东良,朱翠山,等.冀中坳陷苏桥—文安油气田混源油定量认别模式研究(一):原油成因分类及地球化学特征[J].天然气地球科学,2004,15(2):115 -119.
[25] Liu Q,Krooss B M,Hollenstein J,et al.A Comparison of Pyrolysis Products with Models for Gas Generation from Tarim Coal and Its Macerals and Geological Extrapolations[C]//23th Annual Meeting of TSOP,Beijing,2006:164.

[1] 王晖,张磊,石军太,张丽霞,高潮,张亮,郭超. 鄂尔多斯盆地东南部山西组泥页岩生烃热模拟实验[J]. 天然气地球科学, 2017, 28(7): 1078-1084.
[2] 蔡郁文,张水昌,何坤,米敬奎,张文龙,王晓梅,王华建,吴朝东. 磁铁矿对有机质生烃及同位素分馏的影响[J]. 天然气地球科学, 2017, 28(2): 331-340.
[3] 杨福林,王铁冠,李美俊. 塔里木台盆区寒武系烃源岩地球化学特征[J]. 天然气地球科学, 2016, 27(5): 861-872.
[4] 吴远东,张中宁,孙丽娜,贺聪,吉利明,苏龙,夏燕青. 半开放体系下流体压力对烃源岩HTHP模拟产物产率及镜质体反射率的影响[J]. 天然气地球科学, 2016, 27(10): 1904-1912.
[5] 宋换新,文志刚,包建平. 祁连山木里地区煤岩有机地球化学特征及生烃潜力[J]. 天然气地球科学, 2015, 26(9): 1803-1813.
[6] 孟强,王晓锋,王香增,张丽霞,姜呈馥,李孝甫,史宝光. 页岩气解析过程中烷烃碳同位素组成变化及其地质意义——以鄂尔多斯盆地伊陕斜坡东南部长7页岩为例[J]. 天然气地球科学, 2015, 26(2): 333-340.
[7] 曹军,钟宁宁,邓运华,康洪全,孙玉梅,刘岩,戴娜,朱顺玲,黄小艳. 里奥穆尼盆地上白垩统海相烃源岩地球化学特征及生烃潜力[J]. 天然气地球科学, 2014, 25(9): 1426-1436.
[8] 熊德明,马万云,张明峰,吴陈君,妥进才. 干酪根类型及生烃潜力确定新方法[J]. 天然气地球科学, 2014, 25(6): 898-905.
[9] 王香增,贺永红,张立宽,付明义. 鄂尔多斯盆地吴起—志丹地区长10烃源岩特征与生烃潜力[J]. 天然气地球科学, 2013, 24(3): 461-469.
[10] 苗忠英,王晶,潘春孚,何大祥,赵兴齐. 漠河盆地生物气形成条件及存在证据[J]. 天然气地球科学, 2013, 24(3): 512-519.
[11] 李颂,杨树春,仝志刚,郝建荣. 南海南部礼乐盆地深水区烃源岩生烃潜力研究[J]. 天然气地球科学, 2012, 23(6): 1070-1076.
[12] 李苗春,丁海,焦堃,姚素平. 湘西三岔地区牛蹄塘组黑色岩系有机岩石学特征[J]. 天然气地球科学, 2012, 23(6): 1077-1089.
[13] 张小军,曹正林,孙秀建,石亚军,常海燕. 柴达木盆地西南部凹陷特征及生烃潜力分析[J]. 天然气地球科学, 2012, 23(5): 862-867.
[14] 郭继刚,庞雄奇,刘丹丹,姜振学,姜福杰. 库车坳陷中、下侏罗统煤系烃源岩排烃特征及资源潜力评价[J]. 天然气地球科学, 2012, 23(2): 327-334.
[15] 陈新军, 胡宗全, 李淑筠. 华北南部地区上古生界晚期生烃潜力研究[J]. 天然气地球科学, 2011, 22(4): 610-617.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李振宏, 郑聪斌. 鄂尔多斯盆地东部奥陶系储层特征及控制因素[J]. 天然气地球科学, 2004, 15(6): 604 -609 .
[2] 戴金星, 邹才能, 陶士振, 刘全有, 周庆华, 胡安平, 杨 春.
中国大气田形成条件和主控因素
[J]. 天然气地球科学, 2007, 18(4): 473 -484 .
[3] 李能武,李江海,姜义权,保吉成,严嘉年. 花土沟油田N22储层沉积微相及含油性研究[J]. 天然气地球科学, 2012, 23(5): 916 -922 .