天然气地球科学 ›› 2008, Vol. 19 ›› Issue (3): 320–326.doi: 10.11764/j.issn.1672-1926.2008.03.320

• 天然气地质学 • 上一篇    下一篇

白云岩物质组分与结构对微孔储集体系形成的制约——以塔里木盆地下古生界白云岩为例

王小林1;胡文瑄1;张军涛1;钱一雄2;朱井泉3;吴仕强3   

  1. (1. 南京大学地球科学系,江苏 南京 210093;
    2. 中国石油化工股份有限公司勘探西北分公司,新疆 乌鲁木齐 830011;3.中国科学院地质与地球物理研究所,北京 100029)
  • 收稿日期:2008-01-11 修回日期:2008-04-08 出版日期:2008-06-10 发布日期:2008-06-10

Dolomite Composition and Texture Constrain the Formation of MicroporeReservoir: An Example from Low Paleozoic Dolomite, Tarim Basin

WANG Xiao-lin1;HU Wen-xuan1; ZHANG Jun-tao1;QIAN Yi-xiong2,  ZHU JING-quan3; WU Shi-qiang3   

  1. (1. Department of Earthsciences, Nanjing University, Nanjing 210093, China; 2. Northwest Exploration production Company,SINOPEC,Urumqi 830011, China; 3. Institute of Geology and Geophysics,Chinese Academy of Sciences, Beijing 100029,China)
  • Received:2008-01-11 Revised:2008-04-08 Online:2008-06-10 Published:2008-06-10

摘要:

塔里木盆地下古生界白云岩是重要的油气储层,由于经历了长期而复杂的成岩演化过程,其储集空间以次生孔隙为主,其中微孔储集体系分布广泛,很不均匀,并且规律性不强。通过对大量白云岩岩心薄片与显微照片的观察,结合电子探针分析,认为埋藏过程中白云石与方解石的差异溶蚀是微孔储集体系形成的主要方式,白云岩的物质组分与微观结构对白云岩微孔的形成具有重要的制约作用;从白云岩成分上来讲,含灰云岩与灰质云岩是白云岩储层的主要岩性;白云岩中方解石的溶解与否,受方解石赋存状态的制约。根据白云岩显微结构中方解石和白云石两者之间的关系,将储集物性较好的粒状白云岩大致分为3个亚类,即粒间填隙型、粒内包含型、包含—填隙混合型,其中以第1种形式即“粒间填隙型”分布的方解石最容易被溶蚀并形成次生孔隙,包含—填隙混合型次之,粒内包含型最差。

关键词: 物质组分制约, 结构制约, 结构分类, 微孔储集体系, 白云岩, 塔里木盆地

Abstract:

The lower Paleozoic dolomite sequences are important petroleum reservoirs in the Tarim basin. After a long and complex diagenetic process, the secondary dissolution pores are the main reservoir spaces. The distribution of the micro\|porosities is wide and not uniform. The diverse\|dissolution between calcite and dolomite during the burial is considered as an important mechanism for the micro\|porosities reservoir system’s formation based on the observation of plenty of well thin sections and micro\|photos, as well as the EPMA data, and this process is constrained by the components and textures of dolomite despite the influence of fluids. Limestone bearing dolomite and calcitic dolomite are the main reservoir rocks with reference to the component of dolomite. However, not all the calcite can be dissolved during the burial process. The distribution type of the calcite in the dolomite has been used to subdivide the sucrosic dolomite into three types, including intercrystalline filling type, innercrystalline filling type and inter\|innercrystalline filling mixed type, and the intercrystalline filling sucrosic dolomite can form fine micro\|porosities during burial dissolution.

Key words: Component constraint, Texture constraint, Texture classification, Micro-porosity reservoir system, Dolomite, Tarim basin

中图分类号: 

  • TE122.2

 1Zenger D H, Dunham J B, Ethington R I. Concepts and models of dolomitizationC//Spec Publ. Tulas: SEPM, 1980,28:320.

 2Murray R C. Origin of porosity in carbonate rocksJ. J Sediment Petrol, 1960, (30): 59-84.

 3Weyl P K. Porosity through dolomitization:conservation of mass requirementsJ. J Sediment  Petrol, 1960, (30): 85-90.

 4] 林会喜.济阳坳陷桩海地区下古生界白云岩储集空间形成机理[J.油气地质与采收率,2006, 15(3):5-7,11.

 5Schmoker J W, Halley R B. Carbonate porosity versus depth: a predictable relation for south FloridaJ. AAPG Bulletin, 1982, (66): 2561-2570.

 6Lucia F J, Major R P. Porosity evolution through hypersaline reflux dolomitizationC// Spec Publ Purser B, Tucker M, Zenger D. Dolomites-A Volume in Honor of Dolomieu. International Association of Sedimentologists. Cambridge: Blackwell Scientific Publications, 1994: 325-341.

 7Arthur H Saller, Nuel Henderson. Distribution of Porosity and Permeability in Platform Dolomites:Insight from the Permian of West TexasJ. AAPG Bullein, 1998, (82): 1528-1550.

 8Ruzyla K, Friedman G M. Factors controlling porosity in dolomite reservoirs in the Ordovician Red River Formation,Cabin Creek field, MontanaM// Roehl P O, Choquette P W. Carbonate Petroleum Reservoirs. New York: Springer-Verlag, 1985: 39-69.

 9Bebout D G, Lucia F J, Hocott C R,et al. Characterization of the Grayburg reservoir,University Lands Dune field, Crane County, TexasM// University of Texas at Austin. Bureau of Economic Geology Report of Investigations 168, 1987: 104 .

10Major R P, Bebout D G, Lucia F J. Depositional facies and porosity distribution, Permian (Guadalupian) San Andres and Grayburg formations, P. J. W. D. M. field complex,Central Basin platform, west TexasM// Lomando A J, Harris P M. Giant oil and gas fields: a core workshop. SEPM Core Workshop 12. 1988: 615-648.

11Kerans C, Lucia F J, Senger R K. Integrated characterization of carbonate ramp reservoirs using Permian San Andres Formation outcrop analogsJ. AAPG Bulletin, 1994, (78): 181-216.

12Sun S Q. Dolomite reservoirs: porosity evolution and reservoir characteristicsJ. AAPG Bulletin, 1995, (79): 186-204.

13君文,陈洪德,伍新河.马郎凹陷芦草沟组储层特征及控制因素[J.地质找矿论丛,2006,21(2):125-128,146. 

14] 王嗣敏,吕修祥.塔中地区奥陶系碳酸盐岩储层特征及其油气意义[J].西安石油大学学报:自然科学版,2004,19(4):72-76.

15Warren J . Dolomite :Occurrence ,evolution and economically important associations J. Earth Science Review, 2000 , (52) : 1-81.

16] 顾家裕,朱筱敏,贾进华,.塔里木盆地沉积与储层[M.北京:石油工业出版,2003:185-204.

17] 王雷,史基安,王琪,.鄂尔多斯盆地西南缘奥陶系碳酸盐岩储层主控因素分析[J.油气地质与采收率, 2005,12(4):10-13.

18] 金之钧,朱东亚,胡文瑄,.塔里木盆地热液活动地质地球化学特征及其对储层影响[J.地质学报,2006,80(2):245-253.

19] 杨宁,吕修祥,郑多明.塔里木盆地火成岩对碳酸盐岩储层的改造作用[J.西安石油大学学报:自然科学版,2005,20(4):1-4.

20] 陈文彬,杨平,张予杰,.南羌塘盆地扎仁古油藏白云岩储层特征及成因研究[J.沉积与特提斯地质,2006,26(2):42-46.

21] 杨俊杰,张文正,黄思静,等.埋藏成岩作用的温压条件下白云石溶解过程的实验模拟研究[J.沉积学报,1995,13(3):83-88.

22] 刘永福,殷军,张雄伟,.塔里木盆地东部寒武系沉积特征及优质白云岩储层成因[J].天然气地球科学,2008,19(1):126-132.

23] 刘树根,马永生,黄文明,.四川盆地上震旦统灯影组储集层致密化过程研究[J].天然气地球科学,2007,18(4):485-496.

24] 魏国齐,杨威,张林,.川东北飞仙关组鲕滩储层白云石化成因模式[J].天然气地球科学,2005,16(2):162-166.

25] 张军涛,胡文瑄,钱一雄,.塔里木盆地白云岩储层类型划分、测井模型及其应用[J.地质学报,2008:待刊.

26[KG*7/8]Landes K K. Porosity through dolomitizationJ. AAPG Bulletin, 1946, (30): 305-318.

27Murray R C. Origin of porosity in carbonate rocksJ. J Sediment Petrol, 1960, (30): 59-84.

 

28Halley R B, Schmoker J W.High porosity Cenozoic rocks of South Florida: progressive loss of porosity with depthJ. Am  Assoc Petrol Geol Bull, 1983, (67): 191-200.

29Purser B H, Brown A, Aissaoui D M. Nature, origins and porosity in dolomitesC// Spec Publ. Purser B, Tucker M, Zenger D. Dolomites. International Association of Sedimentologists. 1994:283-308.

30Amthor J E, Mountjoy E W, Machel H G. Regional-scale porosity and permeability variations in Upper Devonian Leduc buildups; implications for reservoir development and prediction in carbonatesJ. Am Assoc Petrol Geol Bull, 1994: (78) ,1541-1559.

31] 朱井泉,吴仕强,王国学.塔里木盆地寒武—奥陶系主要白云岩类型及孔隙发育特征[J.地学前缘,2008:152):67-79.

[1] 张荣虎,王珂,王俊鹏,孙雄伟,李君,杨学君,周露. 塔里木盆地库车坳陷克深构造带克深8区块裂缝性低孔砂岩储层地质模型[J]. 天然气地球科学, 2018, 29(9): 1264-1273.
[2] 王清龙,林畅松,李浩,韩剑发,孙彦达,何海全. 塔里木盆地西北缘中下奥陶统碳酸盐岩沉积微相特征及演化[J]. 天然气地球科学, 2018, 29(9): 1274-1288.
[3] 周波,曹颖辉,齐井顺,黄世伟,刘策,贾进华,陈秀艳. 塔里木盆地古城地区下奥陶统储层发育机制[J]. 天然气地球科学, 2018, 29(6): 773-783.
[4] 朱光有,曹颖辉,闫磊,杨海军,孙崇浩,张志遥,李婷婷,陈永权. 塔里木盆地8 000m以深超深层海相油气勘探潜力与方向[J]. 天然气地球科学, 2018, 29(6): 755-772.
[5] 王珊,曹颖辉,杜德道,王石,李洪辉,董洪奎,严威,白莹. 塔里木盆地柯坪—巴楚地区肖尔布拉克组储层特征与主控因素[J]. 天然气地球科学, 2018, 29(6): 784-795.
[6] 曹颖辉,李洪辉,闫磊,王洪江,张君龙,杨敏,赵一民. 塔里木盆地满西地区寒武系台缘带分段演化特征及其对生储盖组合的影响[J]. 天然气地球科学, 2018, 29(6): 796-806.
[7] 闫磊,李洪辉,曹颖辉,杨敏,赵一民. 塔里木盆地满西地区寒武系台缘带演化及其分段特征[J]. 天然气地球科学, 2018, 29(6): 807-816.
[8] 杨敏,赵一民,闫磊,李洪辉,张欣欣,徐振平,罗浩渝. 塔里木盆地东秋里塔格构造带构造特征及其油气地质意义[J]. 天然气地球科学, 2018, 29(6): 826-833.
[9] 陈斐然,张义杰,朱光有,张宝收,卢玉红,张志遥. 塔里木盆地台盆区深层天然气地球化学特征及成藏演化[J]. 天然气地球科学, 2018, 29(6): 880-891.
[10] 黄少英, 杨文静, 卢玉红, 张科, 赵青, 凡闪. 塔里木盆地天然气地质条件、资源潜力及勘探方向[J]. 天然气地球科学, 2018, 29(10): 1497-1505.
[11] 陈燕燕,胡素云,李建忠,王铜山, 陶小晚. 原油裂解过程中组分演化模型及金刚烷类化合物的地球化学特征[J]. 天然气地球科学, 2018, 29(1): 114-121.
[12] 任宇泽,林畅松,高志勇,刘景彦,宋宁宁. 塔里木盆地西南坳陷白垩系层序地层与沉积充填演化[J]. 天然气地球科学, 2017, 28(9): 1298-1311.
[13] 张建勇,倪新峰,吴兴宁,李文正,郝毅,陈娅娜,吕学菊,谷明峰,田瀚,朱茂. 中国主要克拉通盆地深层白云岩优质储层发育主控因素及分布[J]. 天然气地球科学, 2017, 28(8): 1165-1175.
[14] 沈安江,陈娅娜,潘立银,王龙,佘敏. 四川盆地下寒武统龙王庙组沉积相与储层分布预测研究[J]. 天然气地球科学, 2017, 28(8): 1176-1190.
[15] 苏云河,李熙喆,万玉金,张林,刘晓华,刘华林. 孔洞缝白云岩储层连通性评价方法研究及应用[J]. 天然气地球科学, 2017, 28(8): 1219-1225.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!