天然气地球科学 ›› 2008, Vol. 19 ›› Issue (1): 18–22.doi: 10.11764/j.issn.1672-1926.2008.01.18

• 天然气地球化学 • 上一篇    下一篇

典型海相油和典型煤成油轻烃组成特征及地球化学意义

王祥1,2,张敏1,2,黄光辉1,2   

  1. (1.长江大学地球化学系,湖北 荆州 434023;
    2.长江大学油气资源与勘探技术教育部重点实验室,湖北 荆州 434023)
  • 收稿日期:2007-10-23 修回日期:2008-01-06 出版日期:2008-02-10 发布日期:2008-02-10
  • 通讯作者: 王祥wangxiang_1980@163.com.cn. E-mail:wangxiang_1980@163.com.cn.
  • 基金资助:

    国家自然科学基金项目(编号:40573030)资助.

Compositions and Geochemical Characteristics of Light Hydrocarbonsin Typical Marine Oils and Typical Coal Formed Oils

WANG Xiang1,2,ZHNAG Min1,2,HUANG Guang-hui1,2   

  1. (1.Department of Geochemistry, Yangtze University, Jingzhou 434023, China; 
    2.The Key Laboratory of Oil & Gas Resources and Exploration Technology, Ministry ofEducation, Yangtze University, Jingzhou 434023, China)
  • Received:2007-10-23 Revised:2008-01-06 Online:2008-02-10 Published:2008-02-10

摘要:

通过对塔里木盆地塔中隆起典型海相原油和吐哈盆地典型煤成油的轻烃组分、Mango参数和成熟度等分析后发现:2类原油轻烃组分含量差异明显,塔中隆起海相油富含正庚烷,吐哈盆地煤成油则富含甲基环己烷;塔中隆起海相油Mango参数K1值分布在0.97~1.19之间,与Mango所报道的结果相一致,而吐哈盆地煤成油的K1值却异常高(1.35~1.66);塔中隆起海相油成熟度参数庚烷值(32.3%~45.4%)和异庚烷值(1.9~3.7)高于煤成油,已处于高成熟阶段,塔中隆起典型海相油的形成温度要明显高于吐哈盆地煤成油。

关键词: 海相油, 煤成油, 轻烃, 庚烷值, 异庚烷值, Mango轻烃参数

Abstract:

Based on the results of earlier studies on light hydrocarbons by several researchers, typical marine oils from the Tazhong area in the Tarim basin and typical coal-formed oils from the Turpan basin were selected and analyzed to find the differences of compositional characteristics of light hydrocarbons between the two oil categories and to provide new geochemical cognition for classifying the origin of oils. Through the GC-MS analytic technology, the light hydrocarbons data for two kinds of oils were obtained. (1) Light hydrocarbons of marine oils in the Tazhong area are rich in nC7, and the coal- formed oils from the Turpan basin are rich in MCyC6.(2) The Mango parameter K1 ranges from 0.97 to 1.19 in the marine oils, and it is consistent with the conclusion that Mango reported on light hydrocarbons based on a majority of crude oils data. But the K1 values of the coal-formed oils are particularly high (1.35~1.66) and far greater than marine oils. (3) Heptane values in the marine oils, from 32.3% to 45.4%, and isoheptane values, from 1.9 to 3.7, are respectively higher than the coal\|formed oils, which indicates that it is in a highly mature stage. (4) The expulsion temperatures for the coal-formed oils (96.8~102.2℃) are relatively lower than the marine oils (115.3~129.4℃).

Key words: Marine oil, Coa formed oil, Light hydrocarbon, Heptane value, Isoheptane value, Mango parameter.

中图分类号: 

  • TE122.1+13

[1] Schaefer  R G. Single-step capillary column gas chromatographic method for extraction and analysis of subparts per billion amounts of hydrocarbons(C2-C8) from rock and crude oil samples and its application in petroleum geochemistry[J]. Jour. of Chromatography,1978,167: 355-365.[2] Schaefer R G. Determination of subnanogram per gram quantities of light hydrocarbons (C2-C9) in rock samples by hydrogen stripping in the flow system of a capillary gas chromatography[J]. Analytical Chemistry, 50(13):1848-1854.
 [3] Schaefer R G. Analysis of trace amounts of hydrocarbons(C2-C8) from rocks and crude oil samples and its application in petroleum geochemistry[J]. Physics and Chemistry of the Earth, 1980,12:149-156.
 [4] Leythaeuser D. Diffusion of light hydrocarbons on subsurface sedimentary rocks[J].AAPG Bull,1983, 67: 6.
 [5] Hunt J M. Generation and migration of light hydrocarbon[J]. Science, 1984,226:1265-1270.
 [6] Hunt J M. Formation of C4-C7 hydrocarbons from bacterial degradation of naturally occurring terpenoids[J].Nature, 1980, 288:577-588.
 [7] Snowdon  L R. Immature oil and condensate-modification of hydrocarbon generation model for terrestrial organic matter[J].AAPG Bull,1982, 66(6):775-788.
 [8] Mango F D.An invariance in the isoheptanes of petroleum[J]. Science,1987,237:514-517.
 [9] Mango F D. The origin of light hydrocarbon in petroleum: akinetic test of the steady state catalytic hypothesis[J]. Geochim Cos-mochim Acta,1990,54:1215-1323.
[10] Mango F D. Transition metal Catalysis in the Generation of petroleum and natural gas[J]. Geochim Cosmochm Acta,1992,56:553-555.
[11] Mango F D.The origin of light hydrocarbons in petroleum: ring preference in the closure of carbocyclic rings[J].Geochim Cosmochim Acta,1994,58:895-901.
[12] 张敏,林壬子. 试论轻烃形成过程中过渡金属的催化作用[J].地质科技情报,1994,13:75-80.
[13] 唐友军,文志刚,窦立荣,等.一种估算原油成熟度的新方法[J].天然气地球科学,2006,17(2):160-162.
[14] 林壬子,张敏. 塔里木盆地原油轻烃组成特征及其成因类型[J].地质论评,1996,42(增刊): 26-30.
[15] 刘庆新,张敏,黄光辉,等.塔里木盆地塔中地区原油轻烃组成特征及意义[J].天然气地球科学,2006,17(3):319-322.
[16] Ten Haven H L. Application and limitations of Mango's light hydrocarbon parameters in petroleum correlation studies[J].Org Geochem,1996,24:957-976.
 [17 ] 金之钧,蔡立国.中国海相油气勘探前景 ,主要问题与对策[J].石油与天然气地质,2002,23(4):326-331.
 [18 ] 柳益群,冯乔.吐—哈盆地侏罗系油藏煤成油问题的讨论[J].石油与天然气地质,2006,27(6):722-730.
[19] Leythaeuser D. Generation and migration of light hydrocarbon C2-C7 in sedimentary basins[J]. Organic  Geochemistry, 1979,1:385-402.
[20] 廖永胜.罐装岩屑轻烃和碳同位素在油气勘探中的应用[M].天然气地质研究论文集.北京:石油业出版社,1989.
[21] 胡惕麟,戈葆雄,张义纲,等.源岩吸附烃和天然轻烃指纹参数的开发和应用[J].石油实验地质,1990,12(4):378-379.
[22] Thompson K F M.  Light hydrocarbons in subsurface sediments[J].Geochem Cosmochim Acta,1979,(43):657-672.
[23] 张敏,张俊.  Mango轻烃参数的开发与应用[J].石油勘探与开发,1998,(25):26-28.

[1] 邓焱,胡国艺,赵长毅. 四川盆地龙岗气田长兴组—飞仙关组天然气地球化学特征及成因[J]. 天然气地球科学, 2018, 29(6): 892-907.
[2] 纪红,黄光辉,成定树,许姗姗. 塔里木盆地库车坳陷大宛齐—大北地区原油轻烃特征及地球化学意义[J]. 天然气地球科学, 2017, 28(6): 965-974.
[3] 祁帅,李贤庆,何坤,张光武,陈金明,高文杰,梁万乐. 不同类型有机质热演化轻烃产率及组成特征对比[J]. 天然气地球科学, 2017, 28(6): 975-986.
[4] 杨禄,张春明,李美俊,卞龙,余兴. Mango轻烃参数在塔里木盆地大宛齐油田中的应用[J]. 天然气地球科学, 2016, 27(8): 1524-1531.
[5] 张博为,张居和,付广. 松辽盆地莺山断陷深层天然气地球化学特征与各套烃源岩定量贡献[J]. 天然气地球科学, 2016, 27(12): 2185-2192.
[6] 王亚鹏,常象春,程斌,师生宝. 塔里木盆地哈拉哈塘凹陷奥陶系原油C5—C7轻烃全二维气相色谱与常规色谱对比分析[J]. 天然气地球科学, 2015, 26(9): 1814-1822.
[7] 崔景伟,王铁冠,李美俊,耿峰,唐友军,胡健. 塔西南地区原油轻烃特征及成因类型[J]. 天然气地球科学, 2015, 26(7): 1354-1364.
[8] 卢斌,李剑,冉启贵,林潼,李德江,刘卫红. 塔里木盆地库车坳陷东部烃源岩热模拟轻烃特征及成因判识[J]. 天然气地球科学, 2015, 26(6): 1129-1136.
[9] 陈瑞银,王汇彤,陈建平,刘玉莹. 实验方法评价松辽盆地烃源岩的生排烃效率[J]. 天然气地球科学, 2015, 26(5): 915-921.
[10] 王文广,郑民,王民,卢双舫,彭君,鹿坤,吴晓智,黄爱华. 页岩油可动资源量评价方法探讨及在东濮凹陷北部古近系沙河街组应用[J]. 天然气地球科学, 2015, 26(4): 771-781.
[11] 赵贤正,金凤鸣,米敬奎, 崔周旗,王吉茂,李辉,何坤,丁晗. 牛东油气田原油中金刚烷和轻烃特征及其对油气成因的指示意义[J]. 天然气地球科学, 2014, 25(9): 1395-1402.
[12] 任拥军,吕琳,柳飒,周立宏,蒲秀刚. 板桥凹陷原油轻烃地球化学特征[J]. 天然气地球科学, 2014, 25(8): 1218-1225,1274.
[13] 常象春,王铁冠,程 斌,王 鑫,邓冰红. 塔北隆起中部原油轻烃地球化学特征及其意义[J]. 天然气地球科学, 2014, 25(7): 1058-1064.
[14] 李洪波,王铁冠. 塔里木盆地原油C5—C13轻馏分组成及其地球化学意义[J]. 天然气地球科学, 2014, 25(12): 2003-2013.
[15] 段毅,赵阳,姚泾利,张伯祥,吴应忠,曹喜喜,徐丽. 轻烃地球化学研究进展及发展趋势[J]. 天然气地球科学, 2014, 25(12): 1875-1888.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!