天然气地球科学 ›› 2021, Vol. 32 ›› Issue (9): 1403–1409.doi: 10.11764/j.issn.1672-1926.2021.04.013

• 天然气开发 • 上一篇    下一篇

凝析气体积系数理论方程新形式推导及应用

康志勇(),张兴文,黄祥光,回岩,李龙   

  1. 中国石油辽河油田公司勘探开发研究院,辽宁 盘锦 124010
  • 收稿日期:2021-01-18 修回日期:2021-04-21 出版日期:2021-09-10 发布日期:2021-09-14
  • 作者简介:康志勇(1964-),男,内蒙古赤峰人,高级工程师,硕士,主要从事油气藏参数评价研究. E-mail:1377211037@qq.com.
  • 基金资助:
    中国石油天然气股份公司科技重大专项“辽河油田千万吨稳产关键技术研究与应用”(2017E-16)

Derivation and application of the new theory equation of condensate gas volume coefficient

Zhiyong KANG(),Xingwen ZHANG,Xiangguang HUANG,Yan HUI,Long LI   

  1. Research Institute of Exploration and Development,Liaohe Oilfield Company,PetroChina,Panjin 124010,China
  • Received:2021-01-18 Revised:2021-04-21 Online:2021-09-10 Published:2021-09-14
  • Supported by:
    The China National Petroleum Corporation (CNPC) Science and Technology Major Projects(2017E-16)

摘要:

为了解决凝析气体积系数在凝析气藏评价中高压物性(PVT)取样分析成本高,借用天然气体积系数公式计算精度又明显偏低这一实际问题,以凝析气体积系数定义及气体状态方程为理论基础推导并建立了凝析气体积系数新方程,同时建立了地层凝析气摩尔组分反演公式。用新方程计算凝析气组分和凝析气体积系数的应用效果明显优于传统方法。采用生产气油比和凝析油密度可将地面天然气组分和凝析油组分还原为地层凝析气组分,且反演精度大于99%;采用新建凝析气体积系数理论方程计算凝析气体积系数不仅大幅降低凝析气PVT取样分析成本,计算精度也由72.9%提升到86.2%,满足了凝析气藏在勘探开发各阶段的评价研究需求。

关键词: 凝析气体积系数, 凝析气密度, 凝析气组分, 天然气组分, 气体偏差系数(气体压缩因子), 体积换算系数

Abstract:

In order to solve the practical problem about high pressure physical property (PVT) sampling and analysis cost of condensate gas volume coefficient in the evaluation of condensate gas reservoirs and the low accuracy of natural gas volume coefficient of condensate formula, a new equation of condensate gas volume coefficient was deduced and established based on the definition of condensate gas volume coefficient and gas state equation. At the same time, the inversion formula of molar composition of the formation condensate gas molar is established. The application effect of the new equation in calculating the condensate gas composition and volume coefficient is obviously better than that of the traditional methods. Using the production gas-oil ratio and condensate density can revert the ground natural gas component and condensate component to the formation condensate gas component, the inversion accuracy is greater than 99%. Using the new theoretical equation of condensate gas volume coefficient to calculate condensate gas volume coefficient not only greatly reduces the cost of PVT sampling analysis of condensate gas, but also improves the calculation accuracy from 72.9% to 86.2%, which meets the evaluation and research needs of condensate gas reservoir in any stage of exploration and development.

Key words: Condensate gas volume factor, Condensate gas density, Condensate gas component, Natural gas component, Gas compressibility factor, Volume conversion coefficient

中图分类号: 

  • TE372

表1

天然气组分分析数据"

井号C1/%C2/%C3/%iC4/%nC4/%iC5/%nC5/%C6/%C7/%C8/%C9/%CO2/%N2/%
1#81.5711.743.400.490.560.150.100.080.060.02/0.711.12
2#88.567.381.620.300.300.120.080.100.200.070.010.340.92
3#88.537.521.440.300.310.130.090.110.240.06/0.340.93
MG189.084.842.220.700.810.290.250.210.08//0.161.36

表2

凝析油及凝析气组分分析数据"

项目井号C1/%C2/%C3/%iC4/%nC4/%iC5/%nC5/%C6/%C7/%C8/%C9/%C10/%C11+/%CO2/%N2/%
凝析油1#13.379.477.942.644.722.962.775.057.589.316.074.1123.890.070.06
2#14.856.274.011.502.081.681.494.0515.6415.827.664.7120.110.110.02
3#10.844.642.691.271.911.781.474.5715.8318.7610.476.4219.250.090.01
MG1//0.180.200.420.600.832.776.2711.1311.7911.5054.31//
凝析气1#71.5911.734.160.881.320.640.560.841.111.240.780.533.070.590.95
2#86.637.351.680.330.340.160.120.210.600.480.210.120.530.340.90
3#87.177.471.460.320.340.160.110.190.510.390.180.110.340.340.91
MG185.354.642.130.680.790.300.280.320.340.470.490.482.280.151.30

表3

凝析气体积系数实验分析数据"

井号基础参数PVT分析参数
T/Kp/MPapb/MPaρc/(g/cm3σ/(cm3/m3Ego/(m3/m3Z1/Bgi
1#401.65117.9860.150.787 9992.061 008.02.511 76293.14
2#405.85105.7062.500.793 4146.136 843.01.853 42369.24
3#404.55105.9243.460.783 690.5911 038.71.818 95410.21
MG1399.1543.8043.800.781 6353.002 640.01.140 00278.04

表4

计算凝析气组分摩尔分数"

井号C1/%C2/%C3/%iC4/%nC4/%iC5/%nC5/%C6/%C7/%C8/%C9/%C10/%C11+/%CO2/%N2/%
1#72.4611.444.010.781.120.530.460.741.061.260.810.553.190.620.98
2#86.697.351.680.330.350.160.120.200.590.470.200.120.510.330.90
3#87.377.481.460.310.330.150.110.180.4780.3480.160.100.290.340.92
MG185.344.642.130.680.790.300.270.320.340.470.500.482.280.151.30

表5

计算凝析气组分摩尔分数相对误差"

井号C1/%C2/%C3/%iC4/%nC4/%iC5/%nC5/%C6/%C7/%C8/%C9/%C10/%C11+/%CO2/%N2/%
1#0.8680.2930.1530.1030.2040.1030.0960.0450.0210.0310.0190.1220.0340.0170.148
2#0.0610.0020.0010.0000.0050.0040.0100.0080.0110.0060.0010.0200.0060.0030.009
3#0.1970.0070.0010.0050.0060.0010.0130.0370.0500.0230.0140.0520.0040.0060.028
MG10.0120.0030.0040.0010.0040.0060.0020.0000.0020.0050.0030.0010.0030.0030.004

表6

天然气组分和凝析气组分计算气体偏差系数对比"

井号天然气组分计算凝析气偏差系数(酸性气体校正后)凝析气组分计算凝析气偏差系数(酸性气体校正后)
T/KTprppc/MPapprZ计算Tpc/KTprppc/MPapprZ计算
1#213.182 941.884 064.629 6825.483 421.977 62250.032 251.606 394.444 0126.548 092.207 77
2#204.675 131.982 904.626 1822.848 201.797 63212.189 321.912 684.586 2123.047 341.834 04
3#204.678 211.976 524.626 2722.895 331.802 30210.124 131.925 294.596 8523.041 881.828 86
MG1205.163 021.945 534.601 279.519 121.118 62222.340 641.795 224.506 949.718 351.118 19

表7

凝析气体积系数计算值及误差"

井号实际分析值凝析气体积系数新方程计算(忽略凝析油影响)凝析气体积系数新方程计算(考虑凝析油影响)
1/Bgi1/Bgi1绝对误差相对误差/%1/Bgi1绝对误差相对误差/%
1#293.14372.3179.1727.01333.5040.3613.77
2#369.24408.5312.303.10400.424.191.06
3#410.21414.003.790.92407.992.220.54
MG1278.04271.896.152.21271.996.052.17
平均337.66366.6825.358.31353.4816.214.39
1 中华人民共和国国家标准GB/T 26981—2011.油气藏流体物性分析方法[S]. 北京:中国标准出版社,2012.
National Standards of the People's Republic of China GB/T 26981—2011. Methods for Fluid Physical Properties Analysis of Oil and Gas Reservoirs[S]. Beijing:Chinese Standard Press, 2012.
2 刘建仪,李士伦,郭平,等. 天然气偏差系数的测定[J]. 天然气工业,2002,22(2):63-65.
LIU J Y,LI S L,GUO P,et al. Measurement of gas deviation factor [J]. Natural Gas Industry,2002,22(2):63-65.
3 王鹏,袁冶,陈琴仪. 凝析气恒容衰竭试验PVT数据的检验[J]. 中国石油大学学报:自然科学版,1990,14(5):73-80.
WANG P,YUAN Y,CHEN Q Y. Test of experimental PVT data from gas condensate CVD process[J]. Journal of China University of Petroleum: Edition of Natural Science,1990,14(5):73-80.
4 李建伟,赵习森,孙雷,等. 雅克拉—大涝坝凝析气田的相态特征[J]. 天然气工业,2008,28(8):84-85.
LI J W,ZHAO X S,SUN L,et al. Phase behaviors of the Yakela-Dalaoba condensate field[J]. Natural Gas Industry, 2008,28(8):84-85.
5 刘宝和. 中国石油勘探开发百科全书(开发卷)[M]. 北京:石油工业出版社,2008:247-249.
LIU B H. Encyciopaedia of China Petroleum Exploration and Development(The Development Volume)[M]. Beijing: Petroleum Industry Press,2008:247-249.
6 宋洪才,靳烨. 凝析气藏相态参数实验研究[J].齐齐哈尔大学学报,2012,28(31):79-82.
SONG H C,JIN Y. Experiment study on phase state paramenters of gas condensate reservoir[J]. Journal of Qiqihar University,2012,28(31):79-82.
7 江同文,肖香姣,郑希潭,等. 深层超高压气藏气体偏差系数确定方法研究[J]. 天然气地球科学,2006,17(6):743-746.
JIANG T W,XIAO X J,ZHENG X T,et al. Experiment study on phase state paramenters of gas condensate reservoir[J]. Natural Gas Geoscience,2006,17(6):743-746.
8 胡伟,吕成远,伦增珉,等. 致密多孔介质中凝析气定容衰竭实验及其相态特征[J]. 石油学报,2019,40(11):1388-1395.
HU W,LV C Y,LUN Z M,et al. Constant volume depletion experiment and phase charcteristics of condensate gas in dense porous media[J]. Acta Petrolei Sinica,2019,40(11):1388-1395.
9 连军利,侯读杰,庞长英. 高压凝析气藏流体取样技术[J]. 石油天然气学报,2008,23(5):85-89.
LIAN J L,HOU D J,PANG C Y. Technique of fluid sampling in high pressure condensate gas reservoirs[J]. Journal of Oil and Gas Technology,2008,23(5):85-89.
10 中华人民共和国地质矿产行业标准DZ/T 0217—2020.石油天然气储量估算规范[S]. 北京:中国标准出版社,2020:1-21.
Geological and Mineral Industry Standard of the People's Republic China DZ/T 0217—2020.Regulation of Petroleum Reserves Estimation[S]. Beijing: Chinese Standard Press,2020:1-21.
11 赵勃权,路云峰,张金海,等. 基于凝析气田天然气体积系数计算方法研究[J]. 国外测井技术,2018,39(2):68-71.
ZHAO B Q,LU Y F,ZHANG J H,et al. Study on gas volume coefficient calculation method based on condensate gas field[J]. World Well Logging Technology,2018,39(2):68-71.
12 伍锐东. 利用二元回归计算天然气体积系数的新方法[J]. 天然气与石油,2017,35(4):79-82.
WU R D. A new method of calculating gas formation volume factor by using binary regression[J]. Natural Gas and Oil,2017,35(4):79-82.
13 龙昂.含水气体的体积换算系数[J].石油与天然气化工,1983, 12(4):51-53.
LONG A. Volume conversion factor for water-bearing gas[J]. Chemical Engineering of Oil & Gas,1983,12(4):51-53.
14 丁传柏,石乃光. 折算气相原始无阻流量Q0的概念及计算方法[J]. 天然气工业,1989,9(1):21-25.
DING C B,SHI N G. Concept of reduced gas-phase primary open flow rate(Q0)and its calculation method[J]. Natural Gas Industry,1989,9(1):21-25.
15 康志勇. 油气藏参数评价方法[M]. 北京:石油工业出版社,2013:145-147.
KANG Z Y. Evaluation Method of Oil and Gas Reservoir Parameters[M].Beijing:Petroleum Industry Press,2013:145-147.
16 陈元千. 计算凝析油当量气体体积的方法及应用[J]. 天然气工业,1993,13(6):57-60.
CHEN Y Q. A method of calculating condensate equivalent gas volume and its application[J]. Natural Gas Industry,1993,13(6):57-60.
17 王修朝. 天然气储层含气性定量评价新参数[J]. 天然气工业,2019,39(3):32-37.
WANG X C. New parameters for quantitative evaluation of gas-bearing property of natural gas reservoirs[J]. Natural Gas Industry,2019,39(3):32-37.
18 陈元千. 计算凝析气藏地质储量和重组分井流体组分的方法[J]. 断块油气田,1997,4(5):1-4,26.
CHEN Y Q. The methods of calculating original petrleum in place and recombining composition of total well fluid for gas condensate reservoirs[J]. Fault-Block Oil & Gas Field,1997,4(5):1-4,26.
19 刘长林,张茂林,梅海燕,等. 凝析气藏油气系统相态测试与拟合[J]. 石油地质与工程,2008,22(1):65-68.
LIU C L,ZHANG M L,MEI H Y,et al. Phase state testing and fitting of oil and gas system in condensate gas pool[J]. Petroleum Geology and Engineering,2008,22(1):65-68.
20 DRANCHUK P M,ABOU-KASSEM J H.Calculation of Z factors for natural gases using equations of state[J].The Journal of Canadian Petroleum Technology,1975,14(3):34-36.
21 袁自学. 计算偏差系数经验公式的优化选择[J]. 新疆石油地质,1996,17(2):163-167.
YUAN Z X. Optimizing empirical formula for calculation deviation factor[J]. Xinjiang Petroleum Geology,1996,17(2):163-167.
22 卢智慧. 塔河油田高温高压凝析气层偏差系数计算方法[J]. 油气田地面工程,2013,32(11):27-28.
LU Z H. Calculation method of deviation coefficient of high temperature and high pressure condensate reservoirs in tahe oilfield[J].Oil-Gas Field Surface Engineering,2013,32(11):27-28.
23 WICHERT E,AZIZ K. Compressibility factor of sour natural gases[J]. The Canadian Journal of Chemical Engineering,1971,49(5):267-273.
24 先小洪. 异常高压凝析气藏相态特征实验研究[D]. 成都:西南石油大学,2010:1-49.
XIAN X H. Experimental Study on Phase Characteristics of Abnormal High Pressure Condensate Gas Reservoirs[D].Cheng-du:Southwest Petroleum University,2010:1-49.
[1] 张帆, 冉清昌, 吴玉明, 任志高. 松辽盆地北部古中央隆起带天然气地球化学特征及成藏条件[J]. 天然气地球科学, 2019, 30(1): 126-132.
[2] 王权,操义军,刁帆,张金峰,郭柳汐,邹华耀. 渤海湾盆地廊固凹陷天然气成因类型及分布规律[J]. 天然气地球科学, 2017, 28(9): 1363-1374.
[3] 周飞, 张永庶, 王彩霞, 隋国杰, 王波, 张继红, 张建杰, 吴志雄. 柴达木盆地东坪—牛东地区天然气地球化学特征及来源探讨[J]. 天然气地球科学, 2016, 27(7): 1312-1323.
[4] 宋占东, 姜振学, 宋岩, 赵孟军, 魏勇. 准噶尔盆地南缘天然气中N2地球化学特征及成因分析[J]. 天然气地球科学, 2012, 23(3): 541-549.
[5] 赵孟军, 王绪龙, 达江, 向宝力, 宋岩, 秦胜飞. 准噶尔盆地滴南凸起—五彩湾地区天然气成因与成藏过程分析[J]. 天然气地球科学, 2011, 22(4): 595-601.
[6] 林会喜, 程付启, 金强. 天然气组分、同位素分馏机理及实例分析[J]. 天然气地球科学, 2011, 22(2): 195-200.
[7] 张淑品, 赵孟军, 张水昌, 赵陵,刘培初. 南盘江盆地秧1井天然气地球化学特征及成因分析[J]. 天然气地球科学, 2005, 16(6): 797-803.
[8] 赵孟军,宋岩,柳少波,秦胜飞. 扩散作用对天然气成藏后的影响――以大宛齐油田为例[J]. 天然气地球科学, 2003, 14(5): 393-397.
[9] 黄福堂; . 松辽盆地北部天然气组分碳同位素组成特征和成因类型及其气源探讨[J]. 天然气地球科学, 1991, 2(4): 154-161.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 马应海,苟兰涛,何晓霞,刘芙蓉. 四氢呋喃水合物零度以上生成动力学研究[J]. 天然气地球科学, 2006, 17(2): 244 -248 .
[2] 侯读杰,肖中尧,唐友军,朱俊章,李贤庆. 柯克亚油气田混合来源天然气的地球化学特征[J]. 天然气地球科学, 2003, 14(6): 474 -479 .
[3] 谢增业, 杨威, 胡国艺, 李志生, 孙庆伍. 四川盆地天然气轻烃组成特征及其应用[J]. 天然气地球科学, 2007, 18(5): 720 -725 .
[4] 马向贤,郑建京,郑国东. 含铁矿物对褐煤生烃演化的催化作用[J]. 天然气地球科学, 2014, 25(7): 1065 -1071 .
[5] 李忠兴,李健,屈雪峰,李宪文,雷启鸿,樊建明. 鄂尔多斯盆地长7致密油开发试验及认识[J]. 天然气地球科学, 2015, 26(10): 1932 -1940 .
[6] 蔡春芳. 有机硫同位素组成应用于油气来源和演化研究进展[J]. 天然气地球科学, 2018, 29(2): 159 -167 .
[7] 尹帅, 李爱荣, 陈梦娜, 赵金利, 丁文龙, 赵靖舟, 曹翔宇. 强变形区走滑断裂带伸展—聚敛应力效应构造解析及控气作用[J]. 天然气地球科学, 2018, 29(11): 1568 -1574 .
[8] 何龙, 王云鹏, 陈多福, 王钦贤, 王成. 重庆南川地区五峰组—龙马溪组黑色页岩沉积环境与有机质富集关系[J]. 天然气地球科学, 2019, 30(2): 203 -218 .
[9] 李国会,孙海雷,王金伟,康德江,刘丽娟,李兴伟,沈加刚. 致密油平台式“工厂化”水平井优化设计——以松辽盆地三肇凹陷肇源地区Y63井区扶余油层为例[J]. 天然气地球科学, 2019, 30(11): 1619 -1628 .
[10] 朱维耀, 王百川, 马东旭, 黄堃, 李兵兵. 水对含微裂缝页岩渗流能力的影响[J]. 天然气地球科学, 2020, 31(3): 317 -324 .