天然气地球科学 ›› 2020, Vol. 31 ›› Issue (3): 317–324.doi: 10.11764/j.issn.1672-1926.2019.12.003

• 天然气开发 •    下一篇

水对含微裂缝页岩渗流能力的影响

朱维耀(),王百川(),马东旭,黄堃,李兵兵   

  1. 北京科技大学土木与资源工程学院,北京 100083
  • 收稿日期:2019-06-24 修回日期:2019-12-06 出版日期:2020-03-10 发布日期:2020-03-26
  • 通讯作者: 王百川 E-mail:weiyaook@sina.com;1033357385@qq.com
  • 作者简介:朱维耀(1960-),男,辽宁沈阳人,教授,博士生导师,主要从事渗流流体力学和油气田开发研究.E-mail:weiyaook@sina.com.
  • 基金资助:
    国家自然科学基金面上项目“考虑微观力作用的纳微米孔隙流动理论及模拟研究”(51974013)

Effect of water on seepage capacity of shale with microcracks

Wei-yao ZHU(),Bai-chuan WANG(),Dong-xu MA,Kun HUANG,Bing-bing LI   

  1. Civil and Resource Engineering School,University of Science and Technology Beijing,Beijing 100083,China
  • Received:2019-06-24 Revised:2019-12-06 Online:2020-03-10 Published:2020-03-26
  • Contact: Bai-chuan WANG E-mail:weiyaook@sina.com;1033357385@qq.com
  • Supported by:
    The National Natural Science Foundation of China(51974013)

摘要:

页岩储层经水力压裂后,发育不同尺度的裂缝,返排液滞留在储层与裂缝中,改变了页岩储层的含水饱和度,从而影响了页岩气的流动。为研究微裂缝条件下水对页岩储层渗流能力的影响,选取四川盆地下志留统龙马溪组储层黑色页岩,经巴西劈裂造缝处理后开展岩心实验,并结合扫描电镜实验方法以及渗流力学理论对含水条件下页岩储层渗流能力的影响因素进行分析,结果表明:黏土矿物含量以及缝网发育程度决定了页岩储层渗流能力;黏土矿物含量越多,储层渗流能力下降越大;主裂缝的开度及缝网形态控制着水在裂缝系统中的作用范围。通过拟合实验数据建立渗流能力下降幅度与面积密度方程,并对微裂缝条件下水对页岩渗流能力的影响情况做出细致分析。

关键词: 页岩气, 微裂缝, 黏土矿物, 渗流能力

Abstract:

The shale reservoir develops cracks with different scales after hydraulic fracturing. The flowback fluid stays in the reservoir and the fracture, changing the water saturation of the shale reservoir, thus affecting the flow of shale gas. In order to study the effect of water on the seepage capacity of shale reservoirs under micro-crack conditions, the black shale of the Longmaxi Formation reservoir in Sichuan Province was selected and the core experiment was carried out after the crack-making treatment via Brazilian cracking. The influencing factors of shale reservoir seepage capacity under water condition were analyzed by the experimental methods of scanning electron microscopy and the theory of seepage mechanics. The results show that clay mineral content and fracture network development determine seepage capacity of shale reservoirs. The more clay minerals, the greater the decline of reservoir seepage capacity. The opening of the main crack and the distribution pattern of the micro crack control the scope of water in the crack system. The equations of the decreasing extent and area density of seepage capacity were established by fitting experimental data, and the influence of water on shale seepage capacity under micro-crack conditions was analyzed.

Key words: Shale gas, Microcrack, Clay minerals, Seepage capacity

中图分类号: 

  • TE312

图1

不同缝网形态岩样"

图2

岩样裂缝CT扫描"

表1

岩样基础数据"

样品编号M1M2M3
长度/cm4.754.574.16
直径/cm2.532.532.52
孔隙度/%1.071.651.16
渗透率/(10-3μm2)2.2510.1734.03

图3

黏土矿物及全岩矿物相对含量"

图4

实验装置"

图5

实验装置流程"

图6

水作用前后微裂缝渗流能力变化"

图7

裂缝两侧的黏土矿物"

图8

黏土矿物含量与渗流能力下降的关系"

图9

渗流能力下降幅度与压力梯度的关系"

表2

实验过程岩样物性参数"

样品编号M1M2M3
束缚水饱和度/%1.49.65.8
主裂缝宽度/μm7.18.215.5
渗流能力下降幅度/%86170
裂缝表面积/cm2132935

表3

岩心滞留水质量与面积密度"

岩心编号渗流能力下降幅度/%滞留水质量/g面积密度/(g/cm2)
M1280.079 160.006 089
700.544 70.041 9
950.869 90.066 92
M2510.947 10.032 66
701.032 50.035 6
821.215 70.041 92
M3902.208 90.063 11
902.208 90.063 11
902.208 90.063 11

图10

缝网渗流能力下降幅度与面积密度的关系"

1 张金川,金之钧,袁明生.页岩气成藏机理和分布[J].天然气工业,2004,24(7):15-18,131-132.
ZHANG J C, JIN Z J, YUAN M S. Reservoiring mechanism of shale gas and its distribution[J]. Natural Gas Industry, 2004,24(7):15-18,131-132.
2 佚名.我国最大页岩气田2018年产气量[J].能源与环境,2019(2):27.
NONE. China's largest shale gas field gas production in 2018[J]. Energy and Environment,2019(2):27.
3 邹才能,董大忠,王玉满,等.中国页岩气特征、挑战及前景(二)[J].石油勘探与开发,2016,43(2):166-178.
ZOU C N, DONG D Z, WANG Y M, et al. Shale gas in China: Characteristics, challenges and prospects(Ⅱ)[J]. Petroleum Exploration & Development, 2016,43(2):166-178.
4 张磊, 康钦军, 姚军, 等. 页岩压裂中压裂液返排率低的孔隙尺度模拟与解释[J]. 科学通报, 2014, 59(32): 3197-3203.
ZHANG L, TANG Q J, YAO J, et al. The explanation of low recovery of fracturing fluid in shale hydraulic fracturing by pore-scale simulation[J].Chinese Science Bulletin, 2014,59(32):3197-3203.
5 VIDIC R D, BRANTLEY S L, VANDENBOSSCHE J M, et al. Impact of shale gas development on regional water quality [J]. Science,2013,340(6134): 1235009.
6 方朝合,黄志龙,王巧智,等.富含气页岩储层超低含水饱和度成因及意义[J].天然气地球科学,2014,25(3):471-476.
FANG C H, HUANG Z L, WANG Q Z, et al. Cause and significance of the ultra-low water saturation in gas-enriched shale reservoir[J]. Natural Gas Geoscience, 2014,25(3):471-476.
7 胡勇,邵阳,陆永亮,等.低渗气藏储层孔隙中水的赋存模式及对气藏开发的影响[J].天然气地球科学,2011,22(1):176-181.
HU Y, SHAO Y, LU Y L, et al. Experimental study on occurrence models of water in pores and the influencing to the development of tight gas reservoir[J]. Natural Gas Geoscience, 2011,22(1):176-181.
8 CURTIS M E, SONDERGELD C H, AMBROSE R J, et al. Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging[J]. AAPG Bulletin, 2012,96(4):665-677.
9 ZHANG J. Creation and Impairment of Hydraulic Fracture Conductivity in Shale Formations[C].College Station: Texas A & M University, c2014.
10 SHARMA M M, YORTSOS Y C, HANDY L L. Release and Deposition of Clays in Sandstones[C]//Paper SPE 13562Presented at the SPE Oilfield and Geothermal Chemistry Symposium, Phoenix, Arizona U.S.A., 1985,9-11 March. Richardson: Society of Petroleum Engineers, 1985.
11 ZHANG J, KAMENOV A, ZHU D, et al. Laboratory measurement of hy-draulic fracture conductivities in the Barnett shale[J]. SPE Production & Operations, 2013, 29(3), 216-227.
12 ZHANG J, KAMENOV A, ZHU D, et al. Measurement of realistic fracture conductivities in the Barnett Shale[C/OL]//Conference Proceedings, IPTC2013: International Petroleum Technology Conference, Mar 2013,cp-350-00030[2013-05-30].
doi: 10.3997/2214-4609-pdb.350.iptc16444
DOI: https://doi.org/10.3997/2214-4609-pdb.350.iptc16444.
doi: 10.3997/2214-4609-pdb.350.iptc16444
13 李东晖,聂海宽.一种考虑气藏特征的页岩含气量计算方法——以四川盆地及其周缘焦页1井和彭页1井为例[J].石油与天然气地质,2019,40(6):1324-1332.
LI D H, NIE H K. A new method to calculate shale gas content based on gas reservoir characterization: A case study of Wells JY 1 and PY 1 in Sichuan Basin and its surrounding areas[J]. Oil & Gas Geology, 2019,40(6):1324-1332.
14 LIN S, LAI B. Experimental Investigation of Water Saturation Effects on Barnett Shale’s Geomechanical Behaviors[C]//Paper SPE 166234 Presented at the SPE Annual Technical Conference and Exhibition. New Orleans,LouisianaU.S.A.,2013.30 September-2 October. Richardson: Society of Petroleum Engineers, c2013.
15 赵佩, 李贤庆, 田兴旺, 等. 川南地区龙马溪组页岩气储层微孔隙结构特征[J]. 天然气地球科学, 2014, 25(6): 947-956.
ZHAO P, LI X Q, TIAN X W, et al. Study on micropore structure characteristics of Longmaxi Formation shale gas reservoirs in the southern Sichuan Basin[J]. Natural Gas Geoscience, 2014,25(6):947-956.
16 冒海军,郭印同,王光进,等.黏土矿物组构对水化作用影响评价[J].岩土力学,2010,31(9):2723-2728.
MAO H J, GUO Y T, WANG G J, et al. Evaluation of impact of clay mineral fabrics on hydration process[J]. Rock and Soil Mechanics, 2010,31(9):2723-2728.
17 游利军,谢本彬,杨建,等.页岩气井压裂液返排对储层裂缝的损害机理[J].天然气工业,2018,38(12):61-69.
YOU L J, XIE B B,YANG J, et al. Mechanism of fracture damage induced by fracturing fluid flowback in shale gas reservoirs[J]. Natural Gas Industry, 2018,38(12):61-69.
[1] 李长海, 赵伦, 刘波, 陈强, 陆成和, 孔悦. 微裂缝研究进展、意义及发展趋势[J]. 天然气地球科学, 2020, 31(3): 402-416.
[2] 钟秋, 傅雪海, 张苗, 张庆辉, 程维平. 沁水煤田石炭系—二叠系煤系地层页岩气开发潜力评价[J]. 天然气地球科学, 2020, 31(1): 110-121.
[3] 张磊夫, 董大忠, 孙莎莎, 于荣泽, 李林, 林士尧, 欧阳小虎, 施振生, 武瑾, 昌燕, 马超, 李宁. 三维地质建模在页岩气甜点定量表征中的应用[J]. 天然气地球科学, 2019, 30(9): 1332-1340.
[4] 尤源, 梁晓伟, 冯胜斌, 牛小兵, 淡卫东, 李卫成, 王芳, . 鄂尔多斯盆地长7段致密储层主要黏土矿物特征及其地质意义[J]. 天然气地球科学, 2019, 30(8): 1233-1241.
[5] 王科, 李海涛, 李留杰, 张庆, 补成中, 王志强. 3种常用页岩气井经验递减方法——以四川盆地威远区块为例[J]. 天然气地球科学, 2019, 30(7): 946-954.
[6] 苟启洋, 徐尚, 郝芳, 舒志国, 杨峰, 陆扬博, 张爱华, 王雨轩, 程璇, 青加伟, 高梦天. 基于灰色关联的页岩储层含气性综合评价因子及应用——以四川盆地焦石坝区块为例[J]. 天然气地球科学, 2019, 30(7): 1045-1052.
[7] 崔春兰, 董振国, 吴德山. 湖南保靖区块龙马溪组岩石力学特征及可压性评价[J]. 天然气地球科学, 2019, 30(5): 626-634.
[8] 王秀平, 牟传龙, 肖朝晖 , 郑斌嵩 , 陈尧 , 王启宇. 鄂西南地区五峰组—龙马溪组连续沉积特征[J]. 天然气地球科学, 2019, 30(5): 635-651.
[9] 黄小青, 王建君, 杜悦, 李林, 张卓. 昭通国家级页岩气示范区YS108区块小井距错层开发模式探讨[J]. 天然气地球科学, 2019, 30(4): 557-565.
[10] 曾凡辉, 彭凡, 郭建春, 钟华, 向建华. 考虑页岩缝宽动态变化的微裂缝气体质量传输模型[J]. 天然气地球科学, 2019, 30(2): 237-246.
[11] 张磊, 徐兵祥, 辛翠平, 乔向阳, 穆景福, 许阳, 韩长春. 考虑主裂缝的页岩气产能预测模型[J]. 天然气地球科学, 2019, 30(2): 247-256.
[12] 谢维扬, 刘旭宁, 吴建发, , 张鉴, 吴天鹏, 陈满. 页岩气水平井组产量递减特征及动态监测[J]. 天然气地球科学, 2019, 30(2): 257-265.
[13] 徐加祥, 丁云宏, 杨立峰, 刘哲, 陈挺. 页岩气储层迂曲微裂缝二维重构及多点起裂分析[J]. 天然气地球科学, 2019, 30(2): 285-294.
[14] 曹香妮,姜振学,朱德宇,仇恒远,陈磊,罗东东,双子俊,李维邦. 川东北地区自流井组陆相页岩岩相类型及储层发育特征[J]. 天然气地球科学, 2019, 30(12): 1782-1793.
[15] 张成林,张鉴,李武广,田冲,罗超,赵圣贤,钟文雯. 渝西大足区块五峰组—龙马溪组深层页岩储层特征与勘探前景[J]. 天然气地球科学, 2019, 30(12): 1794-1804.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张延敏, . 1996~1999年世界天然气产量[J]. 天然气地球科学, 2000, 11(3): 44 -45 .
[2] 张宝,包建平,江凤梅. 三塘湖盆地侏罗系煤岩倾油倾气性探讨[J]. 天然气地球科学, 2006, 17(2): 183 -186 .
[3] 朱俊章;施和生;舒誉;杜家元;罗俊莲;. 珠江口盆地珠-坳陷典型烃源岩热压模拟实验――生排烃模式及TOC恢复系数探讨[J]. 天然气地球科学, 2006, 17(4): 573 -578 .
[4] 完颜容,杨占龙,魏立花,黄云峰,郭精义,李再光. 吐哈盆地台北西部中侏罗统三间房―七克台组沉积相特征[J]. 天然气地球科学, 2006, 17(5): 693 -697 .
[5] 金博,刘震,李绪深. 莺东斜坡带上第三系天然气输导系统研究[J]. 天然气地球科学, 2004, 15(5): 498 -502 .
[6] 唐俊伟, 马新华, 焦创斌贝, 范丽宏. 气井产能测试新方法――回压等时试井[J]. 天然气地球科学, 2004, 15(5): 540 -544 .
[7] 陶明信;沈平;徐永昌;费富安;罗继坤;. 苏北盆地幔源氦气藏的特征与形成条件[J]. 天然气地球科学, 1997, 8(3): 1 -8 .
[8] 张敏,王东良,朱翠山,赵红静 . 冀中坳陷苏桥-文安油气田混源油定量识别模式研究(一):原油成因分类及地球化学特征[J]. 天然气地球科学, 2004, 15(2): 115 -119 .
[9] 古莉,于兴河,万玉金,杜秀芳,帅勇乾,闫伟鹏 . 冲积扇相储层沉积微相分析――以吐哈盆地鄯勒油气田第三系气藏为例[J]. 天然气地球科学, 2004, 15(1): 82 -86 .
[10] 袁志华,梅博文,佘跃惠,向廷生 . 二连盆地马尼特坳陷天然气微生物勘探[J]. 天然气地球科学, 2004, 15(2): 162 -165 .