天然气地球科学 ›› 2020, Vol. 31 ›› Issue (12): 1717–1732.doi: 10.11764/j.issn.1672-1926.2020.07.003

• 天然气地质学 • 上一篇    下一篇

鄂尔多斯盆地天环北部致密砂岩气藏地层水微观赋存特征

高阳1(),陈姗姗1(),田军2,佘源琦1,黄福喜1,宋涛1,汪少勇1,吕维宁1,贾鹏1,刘策1   

  1. 1.中国石油勘探开发研究院,北京 100083
    2.中国石油勘探与生产分公司,北京 100007
  • 收稿日期:2020-04-07 修回日期:2020-07-07 出版日期:2020-12-10 发布日期:2020-12-11
  • 通讯作者: 陈姗姗 E-mail:gaoyang69@petrochina.com.cn;chenshanshan69@petrochina.com.cn
  • 作者简介:高阳(1983-),男,辽宁鞍山人,工程师,博士,主要从事油气地质综合研究与规划部署工作.E-mail:gaoyang69@petrochina.com.cn.
  • 基金资助:
    国家科技重大专项“陆上油气勘探技术发展战略研究”(2017ZX05001-005)

Micro-occurrence of formation water in tight sandstone gas reservoir of north Tianhuan in Ordos Basin

Yang GAO1(),Shan-shan CHEN1(),Jun TIAN2,Yuan-qi SHE1,Fu-xi HUANG1,Tao SONG1,Shao-yong WANG1,Wei-ning LÜ1,Peng JIA1,Ce LIU1   

  1. 1.Research Institute of Petroleum Exploration and Development,Beijing 100083,China
    2.PetroChina Exploration and Production Company,Beijing 100007,China
  • Received:2020-04-07 Revised:2020-07-07 Online:2020-12-10 Published:2020-12-11
  • Contact: Shan-shan CHEN E-mail:gaoyang69@petrochina.com.cn;chenshanshan69@petrochina.com.cn
  • Supported by:
    The China National Science and Technology Major Project(2017ZX05001-005)

摘要:

应用铸体薄片观察、场发射扫描电镜、高压压汞、恒速压汞及核磁共振等实验技术,开展储层微观孔喉结构和地层水微观赋存状态研究。研究认为鄂尔多斯盆地天环北部盒8段—山1段储层以粒内溶孔、晶间孔和残余粒间孔为主要孔隙类型,分别占33%、31%和16%,孔隙半径分布在80~300 μm之间,平均值为154.18 μm,喉道半径分布在0.01~1.60 μm之间,主流喉道半径平均值为0.55 μm,为微米级孔隙和纳米级喉道,喉道半径是储层渗流能力的主要控制因素。地层水具有束缚水、毛管水、自由水和吸附水4种微观赋存状态,大孔喉的粒间孔和溶蚀孔内,低压充注呈气水混合状,含气量较高,赋存自由水,较高充注压力下为纯气残余少量膜状吸附水;中小孔喉控制的粒间孔和溶蚀孔内,低压充注下呈现气水混合,含气量低,赋存大量毛管水,高压充注下呈气水混合或纯气,含气量高,赋存少量毛管水;微小孔喉的粒间孔内,低压充注下为纯水,高压充注为气水混合,但含气量低,赋存束缚水;晶间微孔内,低压和较高压力充注下均以纯水为主,为束缚水。4种地层水微观状态的孔喉半径截止值分别为0.10 μm、0.26 μm和0.28 μm,渗透率截止值分别为0.21×10-3 μm2、0.51×10-3 μm2和0.55×10-3 μm2,孔隙度截止值分别为5.86%、7.99%和8.18%。启动压力梯度和小于0.10 μm的孔喉是地层水微观赋存状态和残余含水饱和度的主控因素,在天然气成藏过程中,随气驱水强度增大,大孔喉控制的地层水百分比逐步降低。研究区自由水占50%,毛管水占18%,束缚水占30%,吸附水占2%,残余含水饱和度为32%左右。

关键词: 致密砂岩, 地层水, 微观孔喉, 气水关系

Abstract:

In this paper, the casting thin section observation, field emission scanning electron microscopy, high pressure mercury injection, constant velocity mercury injection and nuclear magnetic resonance were used to study the pore-throat microstructure and formation water microscopic occurrence in the Upper Paleozoic tight sandstone gas reservoir in northern Tianhuan. The results show that the main pore types in the reservoir of the He8-Shan1 members in the north of Tianhuan are intragranular pore, intergranular pore and residual intergranular pore, the proportions were 33%, 31% and 16%, respectively. The distribution of pore radius is between 80 μm and 300 μm, with an average of 154.18 μm, the distribution of throat radius is between 0.006 μm and 0.598 μm, the average of main throat radius is 0.552 μm. It is micron pore and nano throat controlled reservoir, and throat radius is the main controlling factor of reservoir seepage ability. Formation water has four microscopic occurrences: Bound water, capillary water, free water and adsorbed water. In the intergranular pore and dissolution pore controlled by the macro-pore throat, the mixture of gas and water was found under the low-pressure charging, with high gas content and free water, a small amount of membrane adsorption water was found under the high-pressure charging; In the intergranular pore and solution pore controlled by the small pore throat, the mixture of gas and water under the low-pressure charging presents low gas content and a large amount of capillary water, while the mixture of gas and water or pure gas under the high-pressure charging presents high gas content and a small amount of capillary water; In the intergranular pore controlled by the tiny pore throat, the low-pressure charging is pure water, and the high-pressure charging is gas-water mixture, but the gas content is low and the bound water occurs; In the intergranular micropore, pure water is the main component under low pressure and high pressure charging, which is the bound water. The cut-off values of pore throat radius of the four micro-occurrence of formation water are 0.10 μm, 0.26 μm and 0.28 μm, the cutoff permeability values are 0.21×10-3 μm2, 0.51×10-3 μm2 and 0.55×10-3 μm2, the cutoff values of porosity are 5.86%, 7.99% and 8.18%, respectively. Starting pressure gradient and pore throat less than 0.10 μm are the main controlling factors of formation water micro-occurrence and residual water saturation. In the process of natural gas accumulation, the percentage of formation water controlled by large pore throat decreases gradually with the increase of gas displacement intensity. In this study area, the free water is 50%, capillary water is 18%, bound water is 30%, adsorbed water is 2%, and residual water saturation is about 32%。

Key words: Tight sandstone, Formation water, Micro-pore throat, Gas-water relationship

中图分类号: 

  • TE122.1

图1

研究区位置"

图2

镜下孔隙和喉道类型(a)李4井,盒8下亚段,3 862.81 m,溶蚀孔;(b)余探2井,盒8下亚段,3 713.62 m,溶蚀孔;(c)李16井,山1段,3 612.59 m,溶蚀孔,晶间孔;(d)李11井,盒8下亚段,3 850.87 m,晶间孔;(e)李307井,山1段,4 487.14 m,晶间孔;(f)余3井,山1段,3697.18 m,晶间孔;(g)李4井,盒8下亚段,3 860.20 m,粒间孔;(h)李4井,盒8下亚段,3 877.33 m,粒间孔; (i)李4井,盒8下亚段,3 862.81 m,粒间孔;(j)忠3井,盒8下亚段,3 498.21 m,微裂缝;(k)苏109井,盒8上亚段,3 562.72 m,管束状喉道;(l)忠3井,盒8下亚段,3 499.62 m,片状喉道"

图3

孔隙类型统计"

图4

孔隙度与渗透率关系"

表1

高压压汞样品信息"

样品编号井号埋深/m层位孔隙度 /%渗透率 /(10-3 μm2
1苏2823 855.78山1段9.611.31
2李133 863.03盒8上段7.720.82
3余43 541.6盒8上段9.391.88
4余探23 716.8盒8下段9.111.11
5李133 933.47山1段6.680.74
6苏3083 960.24盒8下段6.930.17
7忠33 499.66盒8下段6.010.33
8李204 339.43盒8上段5.710.53
9李33 929.05盒8上段7.600.23
10苏3083 959.7盒8下段4.910.10
11忠33 498.21山1段4.120.11
12余探23 707.1盒8下段5.090.59
13李123 515.6盒8上段5.010.16
14余33 664.4盒8下段8.840.48
15李123 510.94盒8上段4.910.21
16李123 622.35山1段4.790.19
17忠33 489.56盒8下段5.620.18

表2

恒速压汞实验孔喉结构参数"

井号样品孔隙度 /%

渗透率

/(10-3 μm2

平均孔隙 半径/μm平均喉道 半径/μm孔喉比
李181810.80.551.07155.56162.14
忠探11911.50.881.23151.54132.77
李4207.30.561.14155.44148.16

图5

盒8段—山1段致密砂岩储层压汞曲线"

图6

高压压汞喉道半径分布"

图7

储层孔喉结构与渗透率关系"

图8

储层孔喉结构与孔隙度关系"

图9

恒速压汞实验分析"

表3

天环北部地区山1段—盒8段生产情况统计"

层位试气井/口产水井/不同产水量井/口平均产水产水井 比例
<5 m3/d5~10 m3/d>10 m3/d/(m3/d)/%
盒8上20124804.560%
盒8下5929814714.749%
山14285301.519%

表4

气驱水核磁共振样品信息"

样品编号长度/cm气测孔隙度/%空气渗透率/(10-3 μm2饱和液体气驱介质气驱压力/MPa
324.78311.50.88标准盐水氮气0~2
894.4857.210.24标准盐水氮气0~2
1044.31210.820.55标准盐水氮气0~2
1624.8377.620.13标准盐水氮气0~2
1834.7778.360.37标准盐水氮气0~2
2184.3417.310.56标准盐水氮气0~2

图10

气驱水核磁共振T2谱与地层水分类"

图11

含水饱和度随气驱压力变化"

图12

压力梯度与气体流量变化关系"

图13

致密砂岩气驱水过程气水微观分布模式"

图14

启动压力梯度、孔隙度、渗透率和地层水含量关系"

图15

不同类型地层水含量关系"

图16

驱替压力梯度、启动压力梯度、孔隙度及渗透率与残余含水饱和度关系"

图17

孔隙类型与地层水微观赋存模式"

图18

气驱水核磁共振累计概率曲线(6个样品平均)"

表5

不同类型地层水的核磁共振T2截止值和孔喉半径截止值"

样品T2截止值/ms孔喉半径截止值/μm
T21T22T23Rc1Rc2Rc3
322.2125.2728.790.0330.3790.432
8914.4141.2543.900.2160.6190.658
10410.7323.2924.150.1610.3490.362
1626.419.5810.270.0960.1440.154
1839.3118.5019.700.1400.2780.296
2181.092.983.340.0160.0450.050
平均值6.5117.4218.860.0980.2610.283

图19

山1段—盒8上亚段地层水分布模式"

图20

山1段—盒8上亚段地层水分布模式"

1 陈朝兵,杨友运,邵金辉,等.鄂尔多斯东北部致密砂岩气藏地层水成因及分布规律[J].石油与天然气地质,2019,40(2):313-325.
CHEN C B,YANG Y Y,SHAO J H, et al. Origin and distribution of formation water in tight sandstone reservoirs in the northeastern Ordos Basin[J].Oil and Gas Geology,2019,40(2): 313-325.
2 张文正.鄂尔多斯盆地烃源岩研究新进展[C].中国地质学会石油地质专业委员会.第十届全国有机地球化学学术会议论文摘要汇编.中国地质学会石油地质专业委员会, 2005: 99-102.
ZHANG W Z. New progress in the study of source rocks in Ordos Basin[C]. Abstracts of papers of the 10th national conference on organic geochemistry. Petroleum Geology Committee of China Geological Society, 2005: 99-102.
3 胡鹏,于兴河,王娇,等.鄂尔多斯盆地东南部本溪组地层水化学特征与天然气成藏意义[J].西北大学学报:自然科学版, 2017, 47(1): 92-100,109.
HU P,YU X H,WANG J, et al. Chemical characteristics of Benxi Formation water and its significance for natural gas accumulation in southeast Ordos Basin[J]. Journal of Northwest University: Natural Science Edition, 2017, 47(1):92-100, 109.
4 汪蕴璞,林锦璇,汪林.论含油气盆地含水系统和水文地质期的划分——以东海西湖凹陷为例[J]. 地球科学,1995,20(4):393-398.
WANG Y P, LIN J X, WANG L. Division of water-bearing systems and hydrogeological periods of oil(gas) bearing basin:With Xihu depression in east of China Sea as an example[J]. Earth Science: Journal of China University of Geoscience, 1995, 20(4): 393-398.
5 楼章华,金爱民,朱蓉,等.松辽盆地油田地下水化学场的垂直分带性与平面分区性[J].地质科学, 2006, 41(3):392-403.
LOU Z H, JIN A M, ZHU R, et al. Vertical zonation and planar division of oil field groundwater chemistry fields in the Songliao Basin, China[J].Chinese Journal of Geology,2006, 41(3):392-403.
6 马海勇,周立发,邓秀芹,等.鄂尔多斯盆地姬塬地区延长组长8地层水化学特征及其地质意义[J].西北大学学报:自然科学版,2013, 43(2): 253-257.
MA H Y, ZHOU L F, DENG X Q, et al. The chemical characteristics and geological significance of formation water of Chang 8 subsection in Jiyuan area of Ordos Basin[J].Journal of Northwest University: Natural Science Edition, 2013, 43(2): 253-257.
7 孙向阳,刘方槐.沉积盆地中地层水化学特征及其地质意义[J].天然气勘探与开发,2001,24(4): 47-53.
SUN X Y, LIU F H. The characteristics of hydrochemistry and its character in the middle stratum of sedimentation basin[J]. Natural Gas Exploration and Development, 2001,24(4): 47-53.
8 朱芳冰,周红,刘睿.辽河盆地西部凹陷稠油分布区地层水化学特征[J].地球科学:中国地质大学学报, 2015, 40(11): 1870-1875.
ZHU F B, ZHOU H, LIU R. Geochemical characteristics and origin of formation water in western Depression, Liaohe Basin[J]. Earth Science: Journal of China University of Geoscience, 2015,40(11):1870-1875.
9 王晓梅,赵靖舟,刘新社,等.苏里格气田西区致密砂岩储层地层水分布特征[J].石油与天然气地质,2012,33(5):802-810.
WANG X M, ZHAO J Z, LIU X S, et al. Distribution of formation water in tight sandstone reservoirs of western Sulige Gas Field, Ordos Basin[J]. Oil and Gas Geology,2012,33(5):802-810.
10 邹才能,陶士振,袁选俊,等.“连续型”油气藏及其在全球的重要性:成藏、分布与评价[J].石油勘探与开发,2009,36(6):669-682.
ZOU C N, TAO S Z, YUAN X J, et al. Global importance of “continuous” petroleum reservoirs: Accumulation, distribution and evaluation[J].Petroleum Exploration and Development,2009,36(6):669-682.
11 邹才能,杨智,朱如凯,等.中国非常规油气勘探开发与理论技术进展[J].地质学报,2015,89(6): 979-1007.
ZOU C N, YANG Z, ZHU R K, et al. Progress in China unconventional oil & gas exploration and development and theoretical technologies[J]. Acta Geologica Science,2015,89(6):979-1007.
12 邹才能,张国生,杨智,等.非常规油气概念、特征、潜力及技术——兼论非常规油气地质学[J].石油勘探与开发, 2013, 40(4): 385-399,454.
ZOU C N, ZHANG G S, YANG Z, et al. Geological concepts, characteristics, resource potential and key techniques of unconventional hydrocarbon: On unconventional petroleum geology[J]. Petroleum Exploration and Development,2013,40(4):385-399,454.
13 朱蓉,楼章华,金爱民,等.鄂尔多斯盆地上古生界深盆气藏流体动力学特征及成藏过程分析[J]. 地质科学, 2003,38(1): 31-43.
ZHU R, LOU Z H, JIN A M, et al. Analysis on fluid dynamics and formation process of deep basin gas trap in Upper Paleozoic of the Ordos Basin[J]. Chinese Journal of Geology,2003,38(1): 31-43.
14 闵琪,杨华,付金华.鄂尔多斯盆地的深盆气[J].天然气工业,2000,20(6):11-15,9.
MIN Q,YANG H, FU J H. Deep basin gas in Ordos Basin[J].Natural Gas Industry,2000,20(6): 11-15,9.
15 马新华.鄂尔多斯盆地上古生界深盆气特点与成藏机理探讨[J].石油与天然气地质,2005,26(2):230-236.
MA X H. Discussion on characteristics and reservoiring mechanism of deep basin gas in Upper Paleozoic in Ordos Basin[J].Oil and Gas Geology, 2005,26(2):230-236.
16 王颖.苏里格气田苏11区块气水分布特征及控制因素分析[J].非常规油气,2017,4(3): 25-28,14.
WANG Y. Analysis on characteristics and controlling factors of gas-water distribution pattern in Su11 Block of Sulige Gas Field[J]. Unconventional Oil & Gas, 2017, 4(3): 25-28,14.
17 杨克兵,罗永胜,潘雪峰,等.苏里格气田北区气水层识别及其分布特征[J].国外测井技术,2019, 40(1):21-24.
YANG K B,LUO Y S,PAN X F, et al. Gas and water layer identification and distribution characteristics in north Sulige Gas Field[J]. World Well Logging Technology,2019,40(1):21-24.
18 石玉江,杨小明,张海涛,等.低渗透岩性气藏含水特征分析与测井识别技术——以苏里格气田为例[J].天然气工业,2011,31(2):25-28,122.
SHI Y J, YANG X M, ZHANG H T, et al. Water-cut characteristic analysis and well logging identification methods for low-permeability lithologic gas reservoirs: A case study of the Sulige Gas Field[J]. Natural Gas Industry, 2011,31(2):25-28,122.
19 王若谷,李积海,何太洪,等.苏里格东区苏77、召51井区山西组—下石盒子组沉积微相及气水分布规律研究[J].地下水,2013,35(1):26-28.
WANG R G, LI J H, HE T H, et al. Study on the sedimentary facies and gas-water distribution regularity of Shanxi and Xiashihezi Formation in Su77 & Zhao51 Well Region, eastern Sulige Gas Field[J]. Groundwater, 2013, 35(1): 26-28.
20 代金友,王蕾蕾,李建霆,等.苏里格西区气水分布特征及产水类型解析[J].特种油气藏,2011, 18(2):69-72,138-139.
DAI J Y, WANG L L, LI J T, et al. Analysis of gas-water distribution and water-producing types in the west of Sulige[J].Special Oil & Gas Reservoirs, 2011, 18(2): 69-72, 138-139.
21 朱志良,张万,张成功,等.苏里格气田苏59井区气水分布规律研究[J].重庆科技学院学报:自然科学版,2015,17(4):1-5.
ZHU Z L, ZHANG W, ZHANG C G, et al. Gas water distribution rule in Su59 Block of Sulige Gas Field[J].Journal of Chongqing University of Science and Technology: Natural Sciences Edition,2015,17(4):1-5.
22 张福东,李君,魏国齐,等.低生烃强度区致密砂岩气形成机制——以鄂尔多斯盆地天环坳陷北段上古生界为例[J].石油勘探与开发,2018,45(1):73-81.
ZHANG F D, LI J, WEI G Q, et al. Formation mechanism of tight sandstone gas in areas of low hydrocarbon generation intensity: A case study of the Upper Paleozoic in north Tianhuan depression in Ordos Basin, NW China[J]. Petroleum Exploration and Development,2018,45(1): 73-81.
23 王怀厂,任德生,候云东,等.天环凹陷北部上古生界气水分布主控因素分析[J].特种油气藏, 2018,25(6):32-36.
WANG H C, REN D S, HOU Y D, et al. Main-controlling factor analysis of the Upper Paleozoic gas-water distribution in northern Tianhuan depression[J]. Special Oil & Gas Reservoirs,2018, 25(6):32-36.
24 赵靖舟,白玉彬,曹青,等.鄂尔多斯盆地准连续型低渗透—致密砂岩大油田成藏模式[J].石油与天然气地质, 2012,33(6):811-827.
ZHAO J Z, BAI Y B, CAO Q, et al. Quasi-continuous hydrocarbon accumulation: A new pattern for large tight sand oilfields in the Ordos Basin[J]. Oil and Gas Geology,2012,33(6):811-827.
25 席胜利,刘新社,孟培龙.鄂尔多斯盆地大气区的勘探实践与前瞻[J].天然气工业,2015,35(8): 1-9.
XI S L, LIU X S, MENG P L. Exploration practices and prospect of Upper Paleozoic giant gas fields in the Ordos Basin[J]. Natural Gas Industry, 2015,35(8): 1-9.
26 YAO Y B, LIU D M, CHE Y, et al. Petrophysical characterization of coals by low-field nuclear magnetic resonance (NMR)[J]. Fuel,2010,89(7):1371-1380.
27 孟德伟,贾爱林,冀光,等.大型致密砂岩气田气水分布规律及控制因素——以鄂尔多斯盆地苏里格气田西区为例[J].石油勘探与开发,2016,43(4):607-614,635.
MENG D W, JIA A L, JI G, et al. Water and gas distribution and its controlling factors of large scale tight sand gas: A case study of western Sulige Gas Field, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2016, 43(4): 607-614,635.
28 吴浩,刘锐娥,左智峰,等.致密砂岩储层气水分布特征及其主控因素——以天环坳陷北段上古生界为例[J].中国矿业大学学报,2020,49(1):148-158.
WU H, LIU R E, ZUO Z F, et al. Gas and water distribution characteristics and its main controlling factors of the Upper Paleozoic tight sandstone reservoirs in the northern Tianhuan depression[J]. Journal of China University of Mining & Technology,2020,49(1):148-158.
29 窦伟坦,刘新社,王涛.鄂尔多斯盆地苏里格气田地层水成因及气水分布规律[J].石油学报, 2010,31(5):767-773.
DOU W T, LIU X S, WANG T. The origin of formation water and the regularity of gas and water distribution for the Sulige Gas Field, Ordos Basin[J]. Acta Petrolei Sinica,2010,31(5):767-773.
30 陈昭佑,王光强.鄂尔多斯盆地大牛地气田山西组砂体组合类型及成因模式[J].石油与天然气地质,2010,31(5):632-639.
CHEN Z Y, WANG G Q. Assemblage types and genetic models of the Shanxi sandbodies in Daniudi Gas Field of Ordos Basin[J]. Oil and Gas Geology,2010,31(5):632-639.
31 侯瑞云,刘忠群.鄂尔多斯盆地大牛地气田致密低渗储层评价与开发对策[J].石油与天然气地质,2012,33(1): 118-128.
HOU R Y, LIU Z Q. Reservoir evaluation and development strategies of Daniudi tight sand gas field in the Ordos Basin[J]. Oil and Gas Geology, 2012, 33(1): 118-128.
32 席胜利,李文厚,魏新善,等.鄂尔多斯盆地上古生界两大气田不同石英砂岩储层特征对比研究[J].沉积学报, 2009, 27(2): 221-229.
XI S L,LI W H, WEI X S, et al. Study on the characteristics of quartz sandstone reservoir of the Neopaleozoic of two gas field in Ordos Basin[J]. Acta Sedimentologica Sinica,2009,27(2): 221-229.
33 吕延防,付广,于丹.中国大中型气田盖层封盖能力综合评价及其对成藏的贡献[J].石油与天然气地质,2005,26(6): 742-745,753.
LV Y F, FU G, YU D. Comprehensive evaluation of sealing ability of cap rock in China's large and medium gas fields and their contribution to gas accumulation[J]. Oil and Gas Geology, 2005, 26(6):742-745,753.
34 陈蒲礼,王烁,王丹,等.恒速压汞法与常规压汞法优越性比较[J].新疆地质,2013,31(S1): 139-141.
CHEN P L,WANG S,WANG D, et al. Comparing the constant-speed mercury injection technique with the conventional mercury injection technique[J]. Xinjiang Geology, 2013, 31(S1):139-141.
35 王新江,于少君.浅谈恒速压汞法与常规压汞法优缺点[J].科技与企业, 2013(19): 292.
WANG X J, YU S J. Discussion of advantages and disadvantages of constant velocity mercury injection method and conventional mercury injection method[J]. Technology and Enterprise, 2013(19): 292.
36 吴松涛,朱如凯,李勋,等.致密储层孔隙结构表征技术有效性评价与应用[J].地学前缘,2018, 25(2):191-203.
WU S T, ZHU R K, LI X, et al. Evaluation and application of porous structure characterization technologies in unconventional tight reservoirs[J]. Earth Science Frontiers, 2018, 25(2): 191-203.
37 崔明明,王宗秀,樊爱萍,等.鄂尔多斯盆地苏里格气田西南部地层水特征与气水关系[J].天然气地球科学,2018,29(9):1364-1375.
CUI M M, WANG Z X, FAN A P, et al. Characteristics of formation water and gas-water relation in southwest Sulige Gas Field, Ordos Basin[J]. Natural Gas Geoscience,2018,29(9):1364-1375.
38 邵映明,陈名,石岩,等.苏里格X区块盒8段致密气藏地层水赋存状态及控制因素分析[J].录井工程,2019,30(1):119-123,142.
SHAO Y M, CHEN M, SHI Y, et al. Analysis of formation water occurrence and control factors of tight gas reservoir in He8 of Sulige X area[J].Mud Logging Engineering,2019,30(1):119-123,142.
39 曹锋,邹才能,付金华,等.鄂尔多斯盆地苏里格大气区天然气近源运聚的证据剖析[J].岩石学报, 2011, 27(3):857-866.
CAO F,ZOU C N,FU J H, et al. Evidence analysis of natural gas near-source migration-accumulation model in the Sulige large gas province, Ordos Basin, China[J]. Acta Petrologica Sinica,2011, 27(3): 857-866.
40 付金华,魏新善,任军峰.伊陕斜坡上古生界大面积岩性气藏分布与成因[J].石油勘探与开发, 2008, 35(6): 664-667,691.
FU J H, WEI X S, REN J F. Distribution and genesis of large-scale Upper Palaeozoic lithologic gas reservoirs on Yi-Shaan Slope[J]. Petroleum Exploration and Development,2008,35(6): 664-667,691.
41 赵志平,官大勇,韦阿娟,等.渤海海域新生界地层水化学特征及主控因素[J].天然气地球科学, 2017,28(9):1396-1405.
ZHAO Z P, GUAN D Y, WEI A J, et al. Chemical characteristics of Neogene formation water and the research of their key controlling factors in Bohai sea area[J]. Natural Gas Geoscience, 2017, 28(9):1396-1405.
42 WILSON T P, LONG D T. Geochemistry and isotope chemistry of Ca-Na-Cl brines in Silurian strata, Michigan Basin, USA[J]. Applied Geochemistry, 1993, 8(5): 507-524.
43 周训,李慈君.海水蒸发轨迹线及其应用[J].地球科学:中国地质大学学报,1995,20(4): 410-414.
ZHOU X, LI C J. Seawater evaporation trajectories and their application[J]. Earth Science: Journal of China University of Geoscience,1995,20(4): 410-414.
44 卓勇, 吴勇, 孙为奕, 等. 贵州威宁草海地区地下水化学特征与控制因素研究[J]. 科学技术与工程, 2016, 16(8): 59-65.
ZHOU Y, WU Y, SUN W Y, et al. Hydrochemistry characteristic and the control factor of groundwater of Caohai area in Weining county, Guizhou Province[J].Science Technology and Engineering,2016,16(8): 59-65.
[1] 胡勇, 梅青燕, 王继平, 陈颖莉, 徐轩, 焦春艳, 郭长敏. 致密砂岩气藏井网加密优化[J]. 天然气地球科学, 2020, 31(9): 1326-1333.
[2] 郭明强, 周龙刚, 张兵, 潘新志, 王应斌. 致密砂岩气水分布特征——以鄂尔多斯盆地东部临兴地区为例[J]. 天然气地球科学, 2020, 31(6): 855-864.
[3] 李奇, 高树生, 刘华勋, 叶礼友, 吴泓辉, 朱文卿, 张杰, 杨懿, 杨茂红. 致密砂岩气藏井网加密与采收率评价[J]. 天然气地球科学, 2020, 31(6): 865-876.
[4] 康毅力, 李潮金, 游利军, 李家学, 张震, 王涛. 塔里木盆地深层致密砂岩气层应力敏感性[J]. 天然气地球科学, 2020, 31(4): 532-541.
[5] 杨勤林, 李洋, 曹少蕾, 柯兰梅, 韩璇颖, 李宁. 松辽盆地苏家屯区块致密砂岩岩石物理分析和含气性预测[J]. 天然气地球科学, 2020, 31(4): 578-586.
[6] 孙丽梅. “两宽一高”地震勘探技术在松辽盆地北部深层致密气储层预测中的应用[J]. 天然气地球科学, 2020, 31(10): 1479-1488.
[7] 付斌, 李进步, 张晨, 史红然. 强非均质致密砂岩气藏已开发区井网完善方法[J]. 天然气地球科学, 2020, 31(1): 143-150.
[8] 吕文雅, 曾联波, 周思宾, 吉园园, 梁丰, 惠晨, 尉加盛. 鄂尔多斯盆地西南部致密砂岩储层微观裂缝特征及控制因素[J]. 天然气地球科学, 2020, 31(1): 37-46.
[9] 李二庭, 靳军, 曹剑, 马万云, 米巨磊, 任江玲. 准噶尔盆地新光地区佳木河组天然气地球化学特征及成因[J]. 天然气地球科学, 2019, 30(9): 1362-1369.
[10] 吴松涛, 林士尧, 晁代君, 翟秀芬, 王晓瑞, 黄秀, 徐加乐. 基于孔隙结构控制的致密砂岩可动流体评价——以鄂尔多斯盆地华庆地区上三叠统长6致密砂岩为例[J]. 天然气地球科学, 2019, 30(8): 1222-1232.
[11] 尤源, 梁晓伟, 冯胜斌, 牛小兵, 淡卫东, 李卫成, 王芳, . 鄂尔多斯盆地长7段致密储层主要黏土矿物特征及其地质意义[J]. 天然气地球科学, 2019, 30(8): 1233-1241.
[12] 赵正望, 唐大海, 王小娟, 陈双玲. 致密砂岩气藏天然气富集高产主控因素探讨——以四川盆地须家河组为例[J]. 天然气地球科学, 2019, 30(7): 963-972.
[13] 刘玲, 沃玉进, 孙炜, 陈霞, 徐美娥, 刘力辉. 龙门山前侏罗系沙溪庙组致密砂岩储层叠前地震预测[J]. 天然气地球科学, 2019, 30(7): 1072-1082.
[14] 李勇, 陈世加, 路俊刚, 肖正录, 何清波, 苏恺明, 李俊良. 近源间互式煤系致密砂岩气成藏主控因素——以川中地区须家河组天然气为例[J]. 天然气地球科学, 2019, 30(6): 798-808.
[15] 位云生, 贾爱林, 郭智, 孟德伟, 王国亭. 致密砂岩气藏多段压裂水平井优化部署[J]. 天然气地球科学, 2019, 30(6): 919-924.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!