天然气地球科学 ›› 2020, Vol. 31 ›› Issue (11): 1615–1627.doi: 10.11764/j.issn.1672-1926.2020.03.015

• 天然气地球化学 • 上一篇    下一篇

烃源岩和油气中有机含硫化合物的生成、分布及应用

高文强1,2(),夏燕青2,3(),马素萍2,3,殷国瑞4,张喜龙2,3,马东旭1,权红梅1   

  1. 1.兰州城市学院培黎石油工程学院,甘肃 兰州 730070
    2.甘肃省油气资源研究重点实验室,甘肃 兰州 730000
    3.中国科学院西北生态环境资源研究院,甘肃 兰州 730000
    4.中国石油长庆油田分公司第八采油厂,陕西 西安 710021
  • 收稿日期:2020-02-20 修回日期:2020-03-30 出版日期:2020-11-10 发布日期:2020-11-24
  • 通讯作者: 夏燕青 E-mail:gaowq726@163.com;yqxiagroup@163.com
  • 作者简介:高文强(1991-),男,甘肃陇南人,讲师,博士,主要从事油气地球化学研究.E-mail: gaowq726@163.com.

Formation and distribution of organosulfur compounds in source rocks and crude oils and their geochemical application

Wen-qiang GAO1,2(),Yan-qing XIA2,3(),Su-ping MA2,3,Guo-rui YIN4,Xi-long ZHANG2,3,Dong-xu MA1,Hong-mei QUAN1   

  1. 1.Bailie School of Petroleum Engineering,Lanzhou City University,Lanzhou 730070,China
    2.Key Laboratory of Petroleum Resources,Gansu Province,Lanzhou 730000,China
    3.Northwest Institute of Eco?Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China
    4.No. 8 Oil Recovery Plant,PetroChina Changqing Oilfield Company,Xi'an 710021,China
  • Received:2020-02-20 Revised:2020-03-30 Online:2020-11-10 Published:2020-11-24
  • Contact: Yan-qing XIA E-mail:gaowq726@163.com;yqxiagroup@163.com

摘要:

有机含硫化合物在烃源岩和原油中广泛分布,包含丰富的地球化学信息。综述了有机含硫化合物的分析测试,成岩作用阶段有机含硫化合物的生成,以及有机含硫化合物在烃源岩和油气中的来源和分布规律。有机含硫化合物在判识沉积环境和有机质的成熟度,示踪油气充注路径,应用于油源对比以及指示硫酸盐热化学还原作用(TSR)过程等方面具有广泛的应用价值。有机含硫化合物结构种类复杂,不同沉积环境和岩相以及成熟度的沉积有机质和原油中组成有很大差异。油气形成和不同演化阶段中新有机含硫化合物结构的准确鉴定和单体有机硫同位素的测定,将有助于更好地认识和理解有机含硫化合物在烃源岩和原油中的分布特征及作用,建立新的地球化学指标或指示剂。另外,不同地质条件下有机硫与无机硫之间的相互作用对有机含硫化合物硫同位素组成的影响是未来研究工作的重点方向之一。

关键词: 有机含硫化合物, 烃源岩, 原油, 有机质成熟度, 沉积环境, 油源对比

Abstract:

Organosulfur compounds (OSCs), containing abundant geochemical information, are distributed widely in source rocks and crude oils. The analytical methods of OSCs, the formation of OSCs during early diagenesis, the origins and distribution law of OSCs in source rocks and crude oils have been reviewed extensively based on the detailed investigation of the vast related literatures. OSCs are generally used as indicators for implying the depositional environment, organic matter maturation, oil migration pathways, source rock-oil correlations and thermochemical sulfate reduction (TSR). The structure of OSCs is complex, the composition of OSCs varies in sedimentary organic matter and crude oils from different depositional environment, lithology and maturity. The definitive structure identification and compound specific sulfur isotope analyses of novel OSCs contributes to a better understanding of OSCs distribution in source rocks and crude oils and their effects, which helps to develop new geochemical indicators or tracers during the different stages of oil and gas formation and maturation. Additionally, the interaction and isotope mixing between organic and inorganic sulfur species and their mutual effects on sulfur isotope distribution under different geological conditions should be one of future issues.

Key words: Organosulfur compounds, Source rocks, Crude oils, Organic matter maturation, Depositional environment, Oil-source correlations

中图分类号: 

  • TE122.1
1 CANFIELD D E, RAISWELL R. The evolution of the sulfur cycle[J]. American Journal of Science,1999,299(7):697-723.
2 BOTTRELL S H, NEWTON R J. Reconstruction of changes in global sulfur cycling from marine sulfate isotopes[J]. Earth-Science Reviews, 2006, 75(1-4): 59-83.
3 ANDERSON T F, PRATT L M. Isotopic evidence for the origin of organic sulfur and elemental sulfur in marine sediments[C]∥American Chemical Society Symposium Series 612. Washington DC:The American Chemical Society,1995:378-396.
4 WERNE J P, HOLLANDER D J, LYONS T W, et al. Organic sulfur biogeochemistry: Recent advances and future research directions[C]∥Geology Society of American, Special Paper 379. Bouldey, Colorado: The Geology Society of America, 2004: 135-150.
5 HUGHES W B, HOLBA A G, DZOU L I P. The ratios of dibenzothiophene to phenanthrene and pristane to phytaneas indicators of depositional environment and lithology of petroleum source rocks[J]. Geochimica et Cosmochimica Acta, 1995, 59(17): 3581-3598.
6 SUN X, ZHANG T W, SUN Y G, et al. Geochemical evidence of organic matter source input and depositional environments in the lower and upper Eagle Ford Formation, south Texas[J]. Organic Geochemistry, 2016, 98: 66-81.
7 LI M J, WANG T G, ZHONG N N,et al. Ternary diagram of fluorenes, dibenzothiophenes and dibenzofurans: Indicating depositional environment of crude oil source rocks[J]. Energy Exploration & Exploitation, 2013, 31(4): 569-588.
8 RADKE M, VRIEND S P, RAMANAMPISOA L R. Alkyldibenzofurans in terrestrial rocks: Influence of organic facies and maturation[J]. Geochimica et Cosmochimica Acta, 2000, 64(2): 275-286.
9 罗斌杰,李新宇. 原油中芳烃化合物特征[J]. 地球化学,1993,22(2):127-135.
LUO B J, LI X Y. Characteristics of aromatic hydrocarbons in crude oils[J]. Geochimica, 1993, 22(2): 127-135.
10 李水福,何生. 原油芳烃中三芴系列化合物的环境指示作用[J]. 地球化学,2008,37(1):45-50.
LI S F, HE S. Geochemical characteristics of dibenzothiophene dibenzofuran and fluorine and their homologues and their environmental indication[J].Geochimica,2008, 37(1): 45-50.
11 RADKE M, WELTE D H, WILLSCH H. Maturity parameters based on aromatic hydrocarbons: Influence of the organic matter type[J]. Organic Geochemistry,1986,10(1-3):51-63.
12 RADKE M,WILLSCH H.Extractable alkyldibenzothiophenes in Posidonia Shale (Toarcian) source rocks: Relationship of yields to petroleum formation and expulsion[J]. Geochimica et Cosmochimica Acta, 1994, 58(23): 5223-5244.
13 李景贵. 海相碳酸盐岩二苯并噻吩类化合物成熟度参数研究进展与展望[J]. 沉积学报,2000,18(3):480-483.
LI J G. Research development and prospect of maturity parameters of methylated dibenzothiophenes in marine carbonate rocks[J]. Acta Sedimentologica Sinica,2000,18(3): 480-483.
14 魏志彬,张大江, 张传禄,等. 甲基二苯并噻吩分布指数(MDBI)作为烃源岩成熟度标尺的探讨[J]. 地球化学,2001, 30(3):242-247.
WEI Z B, ZHANG D J, ZHANG C L, et al. Methyldibenzothiophenes distribution index as a tool for maturity assessments of source rocks [J]. Geochimica, 2001,30(3): 242-247.
15 刘琼,何生. 江汉盆地西南缘原油中含硫化合物的分布特征及其地球化学意义[J]. 地质科技情报,2008,27(2): 56-62.
LIU Q, HE S. Distribution characteristics and geochemical significance of organic sulfur compounds from crude oils in the southwestern Jianghan Basin[J].Geological Science and Technology Information, 2008, 27(2): 56-62.
16 吴嘉,齐雯,罗情勇,等. 二甲基二苯并噻吩生成实验及地球化学意义[J]. 石油实验地质,2019,41(2):260-267.
WU J, QI W, LUO Q Y, et al. Experiments on the generation of dimethyldibenzothiophene and its geochemical implications[J]. Petroleum Geology & Experiment, 2019, 41(2): 260-267.
17 YANG S B, LI M J, LIU X Q, et al. Thermodynamic stability of methyldibenzothiophenes in sedimentary rock extracts: Based on molecular simulation and geochemical data[J]. Organic Geochemistry, 2019, 129: 24-41.
18 HO T Y, ROGERS M A, DRUSHEL H V, et al. Evolution of sulfur compounds in crude oils[J]. AAPG Bulletin,1974, 58(11): 2338-2348.
19 ZHU Z L, LI M J, TANG Y J, et al. Identification of phenyldibenzothiophenes in coals and the effects of thermal maturity on their distributions based on geochemical data and theoretical calculations[J]. Organic Geochemistry, 2019, 138: 910-920.
20 王铁冠,何发岐, 李美俊,等.烷基二苯并噻吩类:示踪油藏充注途径的分子标志物[J].科学通报,2005,50(2):176-182.
WANG T G, HE F Q, LI M J,et al. Methyldibenzothiophene series: Molecular marker to spike the filling pathway of oil[J]. Chinese Science Bulletin, 2005, 50(2): 176-182.
21 李美俊,王铁冠,刘菊,等.烷基二苯并噻吩总量示踪福山凹陷 凝析油藏充注途径[J]. 中国科学:D辑,2008,38():122-138.
LI M J, WANG T G, LIU J,et al. Application of using the total amount of methyldibenzothiophenes to spike the filling pathway of oil in Fushan Sag[J]. Science in China: Series D, 2008, 38(supplement 1): 122-138.
22 FANG R H, LI M J, WANG T G,et al. Trimethyldibenzothiophenes: Molecular tracers for filling pathways in oil reservoir[J]. Journal of Petroleum Science and Engineering, 2017, 159: 451-460.
23 FANG R H, WANG T G, LI M J,et al. Dibenzothiophenes and benzo[b]naphthothiophenes: Molecular markers for tracing oil filling pathways in the carbonate reservoir of the Tarim Basin, NW China[J]. Organic Geochemistry, 2016, 91: 68-80.
24 YANG L, LI M J, WANG T G,et al. Dibenzothiophenes and benzonaphthothiophenes in oils, and their application in identifying oil filling pathways in Eocene lacustrine clastic reservoirs in the Beibuwan Basin, South China Sea[J]. Journal of Petroleum Science and Engineering, 2016, 146: 1026-1036.
25 CHEN Z H, YANG Y M, WANG T G,et al. Dibenzothiophenes in solid bitumens: Use of molecular markers to trace paleo-oil filling orientations in the Lower Cambrian reservoir of the Moxi-Gaoshiti Bulge, Sichuan Basin, southern China[J]. Organic Geochemistry, 2017, 108: 94-112.
26 CAI C F, ZHANG C M, CAI L L, et al. Origins of Palaeozoic oils in the Tarim Basin: Evidence from sulfur isotopes and biomarkers[J]. Chemical Geology, 2009, 268(3-4):197-210.
27 CAI C F, ZHANG C M, WORDEN R H, et al. Application of sulfur and carbon isotopes to oil-source rock correlation: A case study from the Tazhong area, Tarim Basin, China[J]. Organic Geochemistry, 2015,83: 140-152.
28 LI S M, AMRANI A, PANG X Q, et al. Origin and quantitative source assessment of deep oils in the Tazhong Uplift, Tarim Basin[J]. Organic Geochemistry, 2015, 78: 1-22.
29 蔡春芳. 有机硫同位素组成应用于油气来源和演化研究进展[J]. 天然气地球科学,2018,29(2):159-167.
CAI C F. Application of organic sulfur isotopic composition to petroleum origin and evolution: A review[J]. Natural Gas Geoscience, 2018, 29(2): 159-167.
30 AMRANI A, DEEV A, SESSIONS A L, et al. The sulfur-isotopic compositions of benzothiophenes and dibenzothiophenes as a proxy for thermochemical sulfate reduction[J]. Geochimica et Cosmochimica Acta, 2012, 84: 152-164.
31 DAHL J E, MOLDOWAN J M, PETERS K E, et al. Diamondoid hydrocarbons as indicators of natural oil cracking[J]. Nature, 1999, 399: 54-57.
32 WEI Z, MOLDOWAN J M, FAGO F, et al. Origins of thiadiamondoids and diamondoidthiols in petroleum[J].Energy Fuels, 2007, 21(6): 3431-36.
33 WEI Z, WALTERS C C, MOLDOWAN J M, et al. Thiadiamondoids as proxies for the extent of thermochemical sulfate reduction[J]. Organic Geochemistry, 2012, 44: 53-70.
34 HANIN S, ADAM P, KOWALEWSKI I, et al. Bridgehead alkylated 2-thiaadamantanes: Novel markers for sulfurisation processes occurring under high thermal stress in deep petroleum reservoirs[J].Chemical Communications,2002,16:1750-1751.
35 CAI C F, AMRANI A, WORDEN R H, et al. Sulfur isotopic compositions of individual organosulfur compounds and their genetic links in the Lower Paleozoic petroleum pools of the Tarim Basin, NW China[J]. Geochimica et Cosmochimica Acta, 2016, 182: 88-108.
36 徐大庆.噻吩类化合物GC-PFPD分析方法的建立及应用[J]. 石油实验地质,2010,32(3):301-304.
XU D Q. Establishment and application of GC-PFPD analytical method for thiophenic compounds[J]. Petroleum Geology and Experiment, 2010, 32(3): 301-304.
37 EGLINTON T I, SINNINGHE DAMSTE J S, POOL W, et al. Organic sulphur in macromolecular sedimentary organic matter. II. Analysis of distributions of sulphur-containing pyrolysis products using multivariate techniques[J]. Geochimica et Cosmochimica Acta, 1992, 56(4): 1545-1560.
38 GRICE K, SCHOUTEN S, NISSENBAUM A, et al. A remarkable paradox: Sulfurised freshwater algal (Botryococcus braunii) lipids in an ancient hypersaline euxinic ecosystem[J]. Organic Geochemistry, 1998, 28(3-4): 195-216.
39 任绪金,祝馨怡,李颖,等. 深度加氢柴油中苯并噻吩类化合物的测定[J]. 石油学报(石油加工),2018,34(1):167-174.
REN X J, ZHU X Y, LI Y, et al. Analysis of benzothiophenes in deep hydrodesulfurization diesel[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2018, 34(1): 167-174.
40 ZHU G Y, ZHANG Y, ZHANG Z Y, et al. High abundance of alkylated diamondoids, thiadiamondoids and thioaromatics in recently discovered sulfur-rich LS2 condensate in the Tarim Basin[J]. Organic Geochemistry, 2018, 123: 136-143.
41 LU H, SHI Q, LU J, et al. Petroleum sulfur biomarkers analyzed by comprehensive two-dimensional gas chromatography sulfur-specific detection and mass spectrometry[J].Energy & Fuels, 2013, 27(12): 7245-7251.
42 卢鸿,史权,马庆林,等.傅里叶变换离子回旋共振质谱对中国高硫原油的分子组成表征[J]. 中国科学: 地球科学,2014,44(1):122-131.
LU H, SHI Q, MA Q L, et al. Molecular characterization of sulfur compounds in some special sulfur-rich Chinese crude oils by FT-ICR MS[J]. Science China: Earth Sciences, 2014, 44 (1) : 122-131.
43 刘颖荣,刘泽龙,胡秋玲,等. 傅里叶变换离子回旋共振质谱仪表征VGO馏分油中噻吩类化合物[J].石油学报(石油加工),2010,26(1):52-59.
LIU Y R, LIU Z L, HU Q L, et al. Characterization of sulfur aromatic species in vacuum gas oil by fourier transformation cyclotron resonance mass spectrometry[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2010, 26(1): 52-59.
44 LIU P, SHI Q, PAN N, et al. Distribution of sulfides and thiophenic compounds in VGO subfractions: Characterized by positive-ion electrospray fourier transform ion cyclotron resonance mass spectrometry[J].Energy & Fuels, 2011, 25(7): 3014-3020.
45 师生宝,李美俊,朱雷.石油及沉积有机质中C1-和C2-烷基二苯并噻吩鉴定及分布[J]. 石油实验地质, 2014,36(5):612-617.
SHI S B, LI M J, ZHU L. Identification and distribution of C1- and C2- alkylated dibenzothiophenes in petroleum and sedimentary organic matter[J]. Petroleum Geology & Experiment, 2014, 32(5): 612-617.
46 李美俊,师生宝,王铁冠,等.石油和沉积有机质中C3-和C4-烷基二苯并噻吩的鉴定[J]. 地球化学, 2014,43(2):157-165.
LI M J, SHI S B, WANG T G,et al. The identification of C3- and C4-alkylated dibenzothiophenes in petroleum and sedimentary organic matter[J].Chinese Journal of Geochemistry, 2014, 43(2): 157-165.
47 LI M J, WANG T G, SIMONEIT B R T,et al. Qualitative and quantitative analysis of dibenzothiophene, its methylated homologues, and benzonaphthothiophenes in crude oils, coal, and sediment extracts[J].Journal of Chromatography A,2012, 1233: 126-136.
48 GIESEMANN A, JAGER H J, NORMAN A L, et al. Online sulfur-isotope determination using an elemental analyzer coupled to a mass spectrometer[J]. Analytical Chemistry, 1994, 66(18): 2816-2819.
49 ODURO H, KAMYSHNY A JR, GUO W, et al. Multiple sulfur isotope analysis of volatile organic sulfur compounds and their sulfonium precursors in coastal marine environments[J]. Marine Chemistry, 2011, 124(1-4): 78-89.
50 AMRANI A, SESSIONS A L, ADKINS J F. Compound-specific δ34S analysis of volatile organics by coupled GC/multicollector-ICPMS[J]. Analytical Chemistry, 2009, 81: 9027-9034.
51 TISSOT B P, WELTE D H. Petroleum Formation and Occurrence: A New Approach to Oil and Gas Exploration[M]. Berlin: Springer-Verlag (Second Edition), 1984.
52 ORR W L. Kerogen/asphaltene/sulfur relationships in sulfur-rich Monterey oils[J]. Organic Geochemistry, 1986,10(1-3): 499-516.
53 CANFIELD D E, BOUDREAU B P, MUCCI A, et al. The early diagenetic formation of organic sulfur in the sediments of Mangrove Lake, Bermuda[J]. Geochimica et Cosmochimica Acta, 1998, 62(5): 767-781.
54 PASSIER H F, BOSCH H J, NIJENHUIS I A, et al. Sulphidic Mediterranean surface waters during Pliocene sapropel formation[J]. Nature, 1999, 397: 146-149.
55 WERNE J P, LYONS T W, HOLLANDER D J, et al. Reduced sulfur in euxinic sediments of the Cariaco Basin: Sulfur isotope constraints on organic sulfur formation[J]. Chemical Geology, 2003, 195(1-4): 159-179.
56 SINNINGHE DAMSTÉ J S, DE LEEUW J W. Analysis, structure and geochemical significance of organically-bound sulfur in the geosphere: State of the art and future research[J]. Organic Geochemistry, 1990, 16(4-6): 1077-1101.
57 BRASSELL S C, LEWIS C A, DE LEEUW J W, et al. Isoprenoid thiophenes: Novel products of sediment diagenesis? [J]. Nature, 1986, 320: 160-162.
58 SINNINGHE DAMSTÉ J S, HAVEN H L TEN, DE LEEUW J W, et al. Organic geochemical studies of Messinian evaporitic basin, Northern Apennines (Italy). II. Isoprenoid and n-alkyl thiophenes and thiolanes[J]. Organic Geochemistry, 1986, 10(4-6): 791-805.
59 NELSON B C, EGLINTON T I, SEEWALD J S, et al. Transformations in organic sulfur speciation during maturation of monetary shale: Constraints from laboratory experiments[J]. American Chemical Society Symposium Series, 1995, 612: 138-166.
60 RIBOULLEAU A, DERENNE S, SARRET G, et al. Pyrolytic and spectroscopic study of a sulphur-rich kerogen from the “Kashpir oil shales” (Upper Jurassic, Russian platform) [J]. Organic Geochemistry, 2000, 31(12):1641-1661.
61 WALTERS C C, QIAN K, WU C, et al. Proto-solid bitumen in petroleum altered by thermochemical sulfate reduction[J]. Organic Geochemistry, 2011, 42(9): 999-1006.
62 夏燕青,王春江,孟仟祥,等.硫芴和氧芴成因模拟[J]. 科学通报,1998,43(15):94-96.
XIA Y Q, WANG C J, MENG Q X, et al. The mechanisms of formation of dibenzothiophene and dibenzofuran by simulation experiment[J]. Chinese Science Bulletin, 1998, 43(15): 94-96.
63 夏燕青,王春江,孟仟祥,等.噻吩系列化合物的形成机理模拟[J]. 地球化学,1999,28(4):393-396.
XIA Y Q, WANG C J, MENG Q X, et al. The simulation on the mechanism of formation of thiophene series compounds[J].Geochemistry, 1999, 28(4): 393-396.
64 夏燕青,孟仟祥,王红勇,等.苯并噻吩系列化合物的成因模拟及其地球化学意义[J]. 沉积学报, 1999,17(4):158-161.
XIA Y Q, MENG Q X, WANG H Y, et al. The simulation of the formation of benzothiophene series compounds and their significance[J]. Acta Sedimentologica Sinica, 1999, 17(4): 158-161.
65 夏燕青,王春江,孟仟祥,等.联苯系列化合物与苯并萘并噻吩系列化合物的形成机制[J]. 中国科学:D辑,地球科学,1999,29(3):259-262.
XIA Y Q, WANG C J, MENG Q X, et al. Investigation of mechanisms of formation of biphenyls and benzonaphthothiophenes by simulation experiment[J]. Science in China: Series D, 1999, 29(3): 259-262.
66 ASIF M, ALEXANDER R, FAZEELAT T, et al. Geosynthesis of dibenzothiophene and alkyl dibenzothiophenes in crude oils and sediments by carbon catalysis[J]. Organic Geochemistry, 2009, 40(8): 895-901.
67 LI M J, SIMONEIT B R T, ZHONG N N, et al. The distribution and origin of dimethyldibenzothiophenes in sediment extracts from the Liaohe Basin,East China[J].Organic Geochemistry, 2013, 65: 63-73.
68 LI M J, ZHONG N N, SHI S B, et al. The origin of trimethyldibenzothiophenes and their application as maturity indicators in sediments from the Liaohe Basin,East China[J].Fuel, 2013, 103: 299-307.
69 ORR W L. Changes in sulfur content and isotopic ratios of sulfur during petroleum maturation-study of Big Horn Basin Paleozoic oils[J]. AAPG Bulletin, 1974, 58(11): 2295-2318.
70 CAI C F, WORDEN R H, BOTTRELL S H, et al. Thermochemical sulphate reduction and the generation of hydrogen sulphide and thiols (mercaptans) in Triassic carbonate reservoirs from the Sichuan Basin, China[J]. Chemical Geology, 2003, 202(1-2): 39-57.
71 WORDEN R H, SMALLEY P C. H2S-producing reactions in deep carbonate gas reservoirs: Khuff Formation, Abu Dhabi[J]. Chemical Geology, 1996, 133(1-4): 157-171.
72 朱光有,张水昌,梁英波,等.四川盆地H2S的硫同位素组成及成因探讨[J]. 地球化学,2006,35(4): 333-345.
ZHU G Y, ZHANG S C, LIANG Y B, et al. Stable sulfur isotopic composition of hydrogen sulfide and its genesis in Sichuan Basin[J]. Geochimica, 2006, 35(4): 333-345.
73 BERNER R A, WESTRICH J T. Bioturbation and the early diagenesis of carbon and sulfur[J]. American Journal of Science, 1985, 285(3): 193-206.
74 HARTGERS W A, LOPEZ J F, SINNINGHE DAMSTE J S, et al. Sulfur-binding in recent environments. II. Speciation of sulfur and iron and implications for the occurrence of organo-sulfur compounds[J].Geochimica et Cosmochimica Acta, 1997, 61(22): 4769-4788.
75 LOCH A R, LIPPA K A, CARLSON D L, et al. Nucleophilic aliphatic substitution reactions of propachlor, alachlor and metolachlor with bisulfide (HS-) and polysulfides (Sn2-) [J]. Environmental and Science Technology, 2002, 36(19): 4065-4073.
76 FILLEY T R, FREEMAN K H, WILKIN R T, et al. Biogeochemical controls on reaction of sedimentary organic matter and aqueous sulfides in Holocene sediments of Mud Lake, Florida[J]. Geochimica et Cosmochimica Acta, 2002, 66(6): 937-954.
77 HEITMANN T, BLODAU C. Oxidation and incorporation of hydrogen sulfide by dissolved organic matter[J]. Chemical Geology, 2006, 235: 12-20.
78 WERNE J P, LYONS T W, HOLLANDER D J, et al. Investigating pathways of diagenetic organic matter sulfurization using compound-specific sulfur isotope analysis[J]. Geochimica et Cosmochimica Acta, 2008, 72(14): 3489-3502.
79 KAMYSHNY A JR, GOIFMAN A, GUN J, et al. Equilibrium distribution of polysulfide ions in aqueous solutions at 25 ℃: A new approach for the study of polysulfides’ equilibria[J]. Environmental Science and Technology, 2004, 38(24): 6633-6644.
80 KAMYSHNY A JR, ZILBERBRAND M, EKELTCHIK I, et al. Speciation of polysulfides and zerovalent sulfur in sulfide-rich water wells in southern and central Israel[J]. Aquatic Geochemistry, 2008, 14: 171-192.
81 BERNE R A. Biogeochemical cycles of carbon and sulfur and their effect on atmospheric oxygen over phanerozoic time[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1990, 75(1-2):97-122.
82 CANFIELD D E, STEWART F J, THAMDRUP B, et al. A cryptic sulfur cycle in oxygen-minimum-zone waters off the Chilean coast[J]. Science, 2010, 330:1375-1378.
83 CANFIELD D E. Isotope fractionation by natural populations of sulfate-reducing bacteria[J]. Geochimica et Cosmochimica Acta, 2001, 65(7):1117-1124.
84 MACHEL H G. Bacterial and thermochemical sulfate reduction in diagenetic settings: Old and new insights[J]. Sedimentary Geology, 2001, 140(1-2): 143-175.
85 KOHNEN M E L, SINNINGHE DAMSTE J S, DE LEEUW J W. Biases from natural sulfurization in paleoenvironmental reconstruction based on hydrocarbon biomarker distributions[J]. Nature, 1991, 349: 775-778.
86 SCHAEFFER P, ADAM P, PHILIPPE E, et al. The wide diversity of hopanoid sulfides evidenced by the structural identification of several novel hopanoid series[J]. Organic Geochemistry, 2006, 37(11): 1590-1616.
87 KREIN E B, AIZENSHTAT Z. Phase transfer catalyzed reactions between polysulfide anions and α, β- unsaturated carbonyl compounds[J]. Organic Geochemistry,1993, 58: 6103-6108.
88 AIZENSHTAT Z, KREIN E B, VAIRAVAMURTHY M A, et al. Role of sulfur in the transformations of sedimentary organic matter: A mechanistic overview[J]. American Chemical Society Symposium Series, 1995, 612: 16-37.
89 HEBTING Y, SCHAEFFER P, BEHRENS A, et al. Biomarker evidence for a major preservation pathway of sedimentary organic carbon[J].Science,2006,312(5780):1627-1631.
90 PICKERING M D, KEELY B J. Low temperature abiotic formation of mesopyrophaeophorbide α from pyrophaeophorbide α under conditions simulating anoxic natural environments[J]. Geochimica et Cosmochimica Acta, 2012, 75(2): 533-540.
91 URBAN N R, ERNST K, BERNASCONI S. Addition of sulfur to organic matter during early diagenesis of lake sediments[J]. Geochimica et Cosmochimica Acta, 1999, 63(6): 837-853.
92 WERNE J P, HOLLANDER D J, BEHRENS A, et al. Timing of early diagenetic sulfurization of organic matter: A precursor-product relationship in Holocene sediments of the anoxic Cariaco Basin, Venezuela[J]. Geochimica et Cosmochimica Acta, 2000, 64(10): 1741-1751.
93 SINNINGHE DAMSTÉ J S, RIJPSTRA W I C, COOLEN M J L, et al. Rapid sulfurisation of highly branched isoprenoid (HBI) alkenes in sulfidic Holocene sediments from Ellis Fjord, Antarctica[J]. Organic Geochemistry, 2007, 38(1): 128-139.
94 AMRANI A, TURNER J W, MA Q S, et al. Formation of sulfur and nitrogen cross-linked macromolecules under aqueous conditions[J]. Geochimica et Cosmochimica Acta, 2007, 71(17): 41-60.
95 BRUCHERT V, PRATT L M. Contemporaneous early diagenetic formation of organic and inorganic sulfur in estuarine sediments from St. Andrew Bay, Florida, USA[J]. Geochimica et Cosmochimica Acta, 1996, 60(13): 2325-2332.
96 AMRANI A, MA Q, SAID-AHMAD W, et al. Sulfur isotope fractionation during incorporation of sulfur nucleophiles into organic compounds[J]. Chemical Communication, 2008: 1356-1358.
97 SHEPPARD W A, BOURNS A N. Sulphur isotope effects in the bisulphite addition reaction of aldehydes and ketones. I. Equilibrium effect and the structure of the addition product[J]. Canadian Journal of Chemistry, 1954, 32(1): 4-13.
98 CHAKHMAKHCHEV A, SUZUKI N. Saturate biomarkers and aromatic sulfur compounds in oils and condensates from different source rock lithologies of Kazakhstan, Japan and Russia[J]. Organic Geochemistry, 1995, 23(4): 289-299.
99 盛国英,傅家谟,BRASSELL S C,等.膏盐盆地高硫原油中的长链烷基噻吩类化合物[J]. 地球化学,1986,15(2):138-146.
SHENG G Y, FU J M, BRASSELL S C, et al. Long chain alkyl thiophenes in high sulfur crude oil from the salt basin[J]. Geochimica, 1986, 15(2): 138-146.
100 周叶骏,关平,吴颜雄,等. 柴达木盆地西部咸水湖相沉积有机质中二苯并噻吩类组成特征及环境意义[J]. 天然气地球科学,2018,29(6):908-920.
ZHOU Y J, GUAN P, WU Y X, et al. Characterization on the composition of dibenzothiophene series in saline lacustrine sediemnts in western Qaidam Basin and its environmental implications[J].Natural Gas Geoscience,2018,29(6):908-920.
101 AMRANI A. Organosulfur Compounds: Molecular and isotopic evolution from biota to oil and gas[J]. Annual Review of Earth and Planetary Sciences, 2014, 42(1): 733-768.
102 KOOPMANS M P, KOSTER J, VANKAAMPETERS, H M E, et al. Diagenetic and catagenetic products of isorenieratene: Molecular indicators for photic zone anoxia[J]. Geochimica et Cosmochimica Acta, 1996, 60(22): 4467-4496.
103 PENG P A, MORALES-IZQUIERDO A, FU J M, et al. Lanostane sulfides in an immature crude oil[J]. Organic Geochemistry, 1998, 28(1-2): 125-134.
104 PENG P A, MORALES-IZQUIERDO A, LOWN E M, et al. Chemical structure and biomarker content of Jinghan asphaltenes and kerogens[J].Energy & Fuel,1999,13(2): 248-265.
105 PENG P A, MORALESIZQUIERDO A, HOGG A, et al. Molecular structure of athabasca asphaltene: Sulfide, ether, and ester linkages[J]. Energy & Fuel, 1997, 11(6): 1171-1187.
106 CHAKHMAKHCHEV A, SUZUKI N, TAKAYAMA K. Distribution of alkylated dibenzothiophenes in petroleum as a tool for maturity assessments[J].Organic Geochemistry, 1997, 26(7-8): 483-489.
107 王铁冠,李素梅,张爱云,等. 应用含氮氧硫探讨新疆轮南油田油气运移[J]. 地质学报,2000,74(1): 85-93.
WANG T G, LI S M, ZHANG A Y,et al. A discussion on petroleum migration in the Lunnan Oilfield of Xinjiang based on nitrogen compounds[J]. Acta Geologica Sinica, 2000, 74(1): 85-93.
108 LI M, YOU H, FOWLER M G, et al. Geochemical constraints on models for secondary petroleum migration along the Upper Devonian Rimbey-Meadowbrook reef trend in central Alberta,Canada[J].Organic Geochemistry,1998,29(1-3):163-182.
109 杨禄,李美俊,刘晓强,等. 甲基二苯并噻吩的吸附性及油藏充注途径示踪机理之Connolly分子表面计算证明[J]. 地球化学,2017,46(4):367-372.
YANG L, LI M J, LIU X Q, et al. Using Connolly surface to characterize the adsorption of methyldibenzothiophenes and their chemical mechanism as molecular tracer for oil filling pathways[J]. Geochimica, 2017, 46(4): 367-372.
110 贾承造. 中国叠合盆地形成演化与中下组合油气勘探潜力[J]. 中国石油勘探,2006,11(1):1-4.
JIA C Z. The formation of superimposed basins and exploration potential of middle and lower combinations in China[J]. China Petroleum Exploration, 2006, 11(1): 1-4.
111 金之钧. 中国海相碳酸盐岩层系油气勘探特殊性问题[J]. 地学前缘,2005,12(3):15-22.
JIN Z J. Particularity of petroleum exploration on marine carbonate strata in China sedimentary basins[J]. Earth Science Frontiers, 2005, 12(3): 15-22.
112 刘文汇,王杰,腾格尔,等. 中国海相层系多元生烃及其示踪技术[J]. 石油学报,2012,33():115-125.
LIU W H, WANG J, TENG G E, et al. Multiple hydrocarbon generation of marine strata and its tracer technique in China[J]. Acta Petrolei Sinica, 2012, 33(supplement 1): 115-125.
113 梁狄刚,陈建平. 中国南方高、过成熟区海相油源对比问题[J]. 石油勘探与开发,2005,32(2):8-14.
LIANG D G, CHEN J P. Oil-source correlations for high and over maturated marine source rocks in South China[J]. Petroleum Exploration and Development, 2005, 32(2): 8-14.
114 ZHANG S C, HANSON A D, MOLDOWAN J M, et al. Paleozoic oil-source rock correlations in the Tarim Basin, NW China[J]. Organic Geochemistry, 2000, 31(4): 273-286.
115 SUN Y G, XU S P, LU H, et al. Source facies of the Paleozoic petroleum systems in the Tabei Uplift, Tarim Basin, NW China: Implications from aryl isoprenoids in crude oils[J]. Organic Geochemistry, 2003, 34(4): 629-634.
[1] 张昭丰, 王良军, 张立强, 黎承银. 川东南回龙场地区小河坝组砂岩元素特征及古环境意义[J]. 天然气地球科学, 2020, 31(9): 1239-1249.
[2] 郭萍. 渤海湾盆地冀中坳陷上古生界煤系烃源岩地球化学特征与生烃演化[J]. 天然气地球科学, 2020, 31(9): 1306-1315.
[3] 游君君, 杨希冰, 雷明珠, 梁刚, 汪紫菱. 珠江口盆地珠三坳陷不同沉积环境下烃源岩和原油中长链三环萜烷、二环倍半萜烷分布特征及地球化学意义[J]. 天然气地球科学, 2020, 31(7): 904-914.
[4] 赛彦明, 田辉, 李杰, 刘银山, 张彬, 刘俊杰. 含油气系统Re⁃Os定年及Re⁃Os元素和同位素体系研究新进展[J]. 天然气地球科学, 2020, 31(7): 939-951.
[5] 刘超威, 郭旭光, 王泽胜, 朱伶俐, 张蓉, 陈洪. 准噶尔盆地阜康凹陷东斜坡侏罗系头屯河组油气成藏期次[J]. 天然气地球科学, 2020, 31(7): 962-969.
[6] 闫磊, 杨敏, 张君龙, 曹颖辉, 杜德道, 王珊, 徐兆辉, 李洪辉, 赵一民. 塔里木盆地塔东地区寒武系烃源岩分布及有利区带评价优选[J]. 天然气地球科学, 2020, 31(5): 667-674.
[7] 李婷婷, 朱光有, 赵坤, 王鹏举. 氮循环及氮同位素在古老烃源岩形成环境重建与油源对比中的应用[J]. 天然气地球科学, 2020, 31(5): 721-734.
[8] 谢增业, 杨春龙, 董才源, 戴鑫, 张璐, 国建英, 郭泽清, 李志生, 李谨, 齐雪宁. 四川盆地中泥盆统和中二叠统天然气地球化学特征及成因[J]. 天然气地球科学, 2020, 31(4): 447-461.
[9] 李二庭, 王汇彤, 王剑, 刘向军, 翁娜, 王海静. 准噶尔盆地乌夏地区生物降解原油中饱和烃组成解析[J]. 天然气地球科学, 2020, 31(4): 462-470.
[10] 朱明, 梁则亮, 马健, 庞志超, 王俊, 焦悦. 准噶尔盆地四棵树凹陷侏罗系有机质生烃差异及油气藏分布规律[J]. 天然气地球科学, 2020, 31(4): 488-497.
[11] 杨帅杰, 王伟锋, 张道亮, 付小东, 张建勇, 李文正. 川东北地区筇竹寺组优质烃源岩分布特征及形成环境[J]. 天然气地球科学, 2020, 31(4): 507-517.
[12] 韩杨, 高先志, 周飞, 王波, 朱军, 段立锋. 柴达木盆地北缘腹部侏罗系烃源岩热演化特征及其对油气成藏影响[J]. 天然气地球科学, 2020, 31(3): 358-369.
[13] 晏继发, 马安来, 李杰豪, 李贤庆. 原油金刚烷类化合物2种常用检测方法的对比[J]. 天然气地球科学, 2020, 31(3): 436-446.
[14] 刘海磊, 李卉, 向辉, 王学勇, 杜社宽. 准噶尔盆地东南缘阜康断裂带及其周缘原油地球化学特征和成因[J]. 天然气地球科学, 2020, 31(2): 258-267.
[15] 王森, 张明震, 李爱静, 张静, 杜圳, 杜宝霞, 吉利民, 张献文. 潮水盆地和民和盆地中侏罗统青土井组煤系烃源岩有机地球化学特征及其意义[J]. 天然气地球科学, 2020, 31(2): 282-294.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 伍藏原;李汝勇;张明益;张明亮;翟姝玲;罗敏;. 微地震监测气驱前缘技术在牙哈凝析气田的应用[J]. 天然气地球科学, 2005, 16(3): 390 -393 .
[2] 王万春,刘文汇, 刘全有. 浅层混源天然气判识的碳同位素地球化学分析[J]. 天然气地球科学, 2003, 14(6): 469 -473 .
[3] 江厚顺,白彦华,冉建立 . 水平井产能预测及射孔参数优选系统研究[J]. 天然气地球科学, 2007, 18(6): 891 -893 .
[4] 刘建锋 彭军 周康 殷孝梅 唐勇 刘金库. 川中—川南过渡带须家河组二段高分辨率层序地层学研究[J]. 天然气地球科学, 2009, 20(2): 199 -203 .
[5] 郭振华, 赵彦超. 大牛地气田盒2段致密砂岩气层测井评价[J]. 天然气地球科学, 2010, 21(1): 87 -94 .
[6] 王明艳, 郭建华, 旷理雄, 朱锐. 湘中坳陷涟源凹陷烃源岩油气地球化学特征[J]. 天然气地球科学, 2010, 21(5): 721 -726 .
[7] 宋琦, 王树立, 陈燕, 郑志, 谢磊. 天然气水合物新型动力学模型与实验研究[J]. 天然气地球科学, 2010, 21(5): 868 -874 .
[8] 赵靖舟. 非常规油气有关概念、分类及资源潜力[J]. 天然气地球科学, 2012, 23(3): 393 -406 .
[9] 吉利明, 罗鹏. 样品粒度对黏土矿物甲烷吸附容量测定的影响[J]. 天然气地球科学, 2012, 23(3): 535 -540 .
[10] 游利军,李雷,康毅力,石玉江,张海涛,杨小明. 考虑有效应力与含水饱和度的致密砂岩气层供气能力[J]. 天然气地球科学, 2012, 23(4): 764 -769 .