天然气地球科学 ›› 2019, Vol. 30 ›› Issue (9): 1341–1348.doi: 10.11764/j.issn.1672-1926.2019.04.014

• 非常规天然气 • 上一篇    下一篇

基于四参数随机生长模型的页岩储层应力敏感分析

徐加祥1,2,3(),杨立峰2,3,丁云宏1,刘哲2,3,高睿2,3,王臻2,3   

  1. 1. 中国石油勘探开发研究院, 北京 100083
    2. 中国石油勘探开发研究院压裂酸化技术服务中心, 河北 廊坊 065007
    3. 中国石油天然气集团公司油气藏改造重点实验室, 河北 廊坊 065007
  • 收稿日期:2019-01-08 修回日期:2019-04-16 出版日期:2019-09-10 发布日期:2019-10-14
  • 作者简介:徐加祥(1991-),男,山东泰安人,博士研究生,主要从事油气藏增产改造技术研究. E-mail:shigong101121@163.com.
  • 基金资助:
    国家科技重大专项“致密油储层高效体积改造技术”(2016ZX05046-004)

Stress sensitivity analysis of the shale reservoir by the quartet structure generation set

Jia-xiang Xu1,2,3(),Li-feng Yang2,3,Yun-hong Ding1,Zhe Liu2,3,Rui Gao2,3,Zhen Wang2,3   

  1. 1. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China
    2. Fracturing and Acidification Service Center of Research Institution of Petroleum Exploration & Development, PetroChina, Langfang 065007, China
    3. CNPC Key Laboratory for Reformation of Oil and Gas Reservoirs, Langfang 065007, China
  • Received:2019-01-08 Revised:2019-04-16 Online:2019-09-10 Published:2019-10-14

摘要:

页岩储层的应力敏感性是影响其后期开发效果的关键因素,从微观的角度深入认识其应力敏感机理及其影响因素对页岩气的开发具有重要意义。借助四参数随机生长模型构建了不同孔隙度和不同孔隙大小分布的岩心样本,利用弹性力学理论模拟了不同有效应力作用下各个岩心孔隙半径的分布变化及其对岩心固有渗透率的影响,深入分析了孔隙大小及其形状因子与上述两者之间的关系。结果表明,导致页岩应力敏感的直接原因是有效应力作用下孔隙面积的减小及孔隙位置的迁移。有效应力的增大使得各孔隙半径均有减小,孔隙半径的减小比例分别与孔隙初始面积和孔隙的形状因子呈正相关关系和负相关关系。在相同的孔隙度条件下,孔隙半径越均匀,平均孔隙半径越小,应力敏感性越强。有效应力的增加使得岩心固有渗透率呈指数型下降且孔隙度越小、固有渗透率越低的岩心,其应力敏感性越强,孔隙度对固有渗透率的影响大于孔隙半径均匀性的影响。

关键词: 页岩储层, 应力敏感, 数字岩心, 四参数随机生长模型, 孔隙结构

Abstract:

The stress sensitivity of permeability in the shale reservoir is the key factor influencing its later development effect. It is of great significance for shale gas development to deeply understand its stress sensitivity mechanism and its influencing factors from the microscopic point of view. In this paper, core samples with different porosity and pore size distribution are constructed by means of the quartet structure generation set. The variation of pore radius distribution and its influence on intrinsic permeability of cores under different effective stress are simulated by using elasticity theory. The relationship between pore size and shape factor and the above two parameters is deeply analyzed. The results show that the direct cause of shale stress sensitivity is the decrease of pore area and the migration of pore position under effective stress. With the increase of effective stress, the pore radius decreases. The proportion of reduction of pore radius is positively and negatively correlated with the initial pore area and the pore shape factor, respectively. Under the same porosity condition, the more uniform the pore radius, the stronger the stress sensitivity. With the increase of effective stress, the intrinsic permeability of core decreases exponentially, and the smaller the porosity and the lower the intrinsic permeability, the stronger the stress sensitivity of core, and the effect of porosity on intrinsic permeability is obviously greater than that of pore radius uniformity.

Key words: Shale reservoir, Stress sensitivity, Digital core, Quartet structure generation set, Microstructure

中图分类号: 

  • TE311

图1

四参数随机生长法固相生长方向示意"

图2

不同结构孔隙构造"

图3

不同结构岩心中孔隙半径分布"

图4

岩心中有效应力示意"

图6

不同孔隙结构岩心中孔隙半径随有效应力变化"

图5

有效应力作用下孔隙结构变化"

图7

各孔隙面积变化比例与孔隙初始面积大小的关系"

图8

各孔隙面积变化比例与孔隙形状因子的关系"

图9

不同孔隙度条件下固有渗透率随有效应力的变化"

图10

不同孔径比例下固有渗透率随有效应力的变化"

1 Zou Caineng , Zhang Guosheng , Yang Zhi ,et al .Geological concepts,characteristics,resource potential and key techniques of unconventional hydrocarbon: On unconventional petroleum geology[J]. Petroleum Exploration and Development, 2013, 40(4): 385-399, 454.
邹才能, 张国生, 杨智, 等 . 非常规油气概念、特征、潜力及技术——兼论非常规油气地质学[J]. 石油勘探与开发, 2013, 40(4): 385-399, 454.
2 Zou Caineng , Zhu Rukai , Wu Songtao , et al . Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations: Taking tight oil and tight gas in China as an instance[J]. Acta Petrolei Sinica, 2012, 33(2):173-187.
邹才能, 朱如凯, 吴松涛, 等 . 常规与非常规油气聚集类型、特征、机理及展望——以中国致密油和致密气为例[J]. 石油学报, 2012,33(2):173-187.
3 Zhu Weiyao , Ma Dongxu , Zhu Huayin , et al . Stress sensitivity of shale gas reservoir and its influence on productivity[J]. Natural Gas Geoscience, 2016, 27(5): 892-897.
朱维耀, 马东旭, 朱华银, 等 . 页岩储层应力敏感性及其对产能影响[J]. 天然气地球科学,2016, 27(5): 892-897.
4 Tian Leng , Li Hongfan , Ma Jixiang ,et al .Multi-stage and multi-layer percolation model of tight gas reservoir based on pressure gradient and stress sensitivity[J]. Natural Gas Geoscience, 2017, 28(12): 1898-1907.
田冷, 李鸿范, 马继翔, 等 . 基于启动压力梯度与应力敏感的致密气藏多层多级渗流模型[J]. 天然气地球科学, 2017, 28(12): 1898-1907.
5 Chalmers G R L , Ross D J K , Bustin R M . Geological controls on matrix permeability of Devonian Gas Shale in the Horn River and Liard basins,northeastern British Columbia,Canada[J].International Journal of Coal Geology,2012,103:120-131.
6 Bustin A M M , Bustin R M , Cui Xiaojun . Importance of fabric on the production of gas shale[C]//SPE Unconventional Reservoirs Conference. Colorado: Society of Petroleum Engineers, 2008:1-29.
7 Kwon O , Kronenberg A K , Gangi A F , et al . Permeability of Wilcox shale and its effective pressure law[J]. Journal of Geophysical Research:Solid Earth,2001,106(B9):19339-19353.
8 Guo Wei , Xiong Wei , Gao Shusheng . Experimental study on stress sensitivity of shale gas reservoir[J]. Special Oil and Gas Reservoirs, 2012, 19(1): 95-97.
郭为, 熊伟, 高树生 . 页岩气藏应力敏感效应实验研究[J]. 特种油气藏, 2012, 19(1): 95-97.
9 Zhang Rui , Ning Zhengfu , Yang Feng , et al . Experimental study on microscopic pore structure controls on shale permeability under compaction process[J]. Natural Gas Geoscience, 2014, 25(8): 1284-1289.
张睿, 宁正福, 杨峰, 等 . 微观孔隙结构对页岩应力敏感影响的实验研究[J]. 天然气地球科学, 2014, 25(8): 1284-1289.
10 Zhang Rui , Ning Zhengfu , Zhang Haishan ,et al . New insights and discussion on stress sensitivity of fractured tight reservoir[J]. Natural Gas Geoscience, 2016, 27(5): 918-923.
张睿, 宁正福, 张海山, 等 . 裂缝性致密储层应力敏感机理新认识[J]. 天然气地球科学, 2016, 27(5): 918-923.
11 Zhang Rui , Ning Zhengfu , Yang Feng ,et al . Shale stress sensitivity experiment and mechanism[J].Acta Petrolei Sinica,2015, 36(2): 224-231, 237.
张睿, 宁正福, 杨峰, 等 . 页岩应力敏感实验与机理[J]. 石油学报, 2015, 36(2): 224-231, 237.
12 Xiao Wenlian , Li Tao , Li Min , et al . Evaluation of the stress sensitivity in tight reservoirs[J]. Petroleum Exploration and Development, 2016, 43(1): 107-114.
肖文联, 李滔, 李闽, 等 . 致密储集层应力敏感性评价[J]. 石油勘探与开发, 2016, 43(1): 107-114.
13 Lei Gang , Wang Hao , Dong Pingchuan ,et al . Quantitative analysis on stress sensitivity of heterogeneous tight sandstone[J]. Petroleum Geology and Recovery Efficiency, 2015, 22(3): 90-94.
雷刚, 王昊, 董平川, 等 . 非均质致密砂岩应力敏感性的定量表征[J]. 油气地质与采收率, 2015, 22(3): 90-94.
14 Li Chuanliang . A theoretical formula of stress sensitivity index with compressibility of rock[J]. Lithologic Reservoirs, 2007, 19(4): 95-98.
李传亮 . 岩石应力敏感指数与压缩系数之间的关系式[J]. 岩性油气藏, 2007, 19(4): 95-98.
15 Lymberopoulos D P , Payatakes A C . Derivation of topological, geometrical, and correlational properties of porous media from pore-chart analysis of serial section data[J]. Journal of Colloid and Interface Science, 1992, 150(1): 61-80.
16 Varslot T , Ghous A , Latham S , et al . Pore scale characterization of carbonates at multiple scale: integration of Micro CT, BSEM and FIBSEM[J].Petrophysics,2010,51(6): 379-387.
17 Zhu Yihua , Tao Guo . Sequential indicator simulation technique and its application in 3D digital core modeling[J]. Well Logging Technology, 2007, 31(2): 112-115.
朱益华, 陶果 . 顺序指示模拟技术及其在3D数字岩心建模中的应用[J]. 测井技术, 2007, 31(2): 112-115.
18 Zhao Xiucai , Yao Jun , Tao Jun , et al . A method of constructing digital core by simulated annealing algorithm[J]. Applied Mathematics A Journal of Chinese Universities: Serial A, 2007, 22(2): 127-133.
赵秀才, 姚军, 陶军, 等 . 基于模拟退火算法的数字岩心建模方法[J]. 高校应用数学学报: A辑, 2007, 22(2): 127-133.
19 Li Renmin , Liu Songyu , Fang Lei , et al . Micro-structure of clay generated by quartet structure generation set[J]. Journal of Zhejiang University: Engineering Science, 2010, 44(10): 1897-1901.
李仁民, 刘松玉, 方磊, 等 . 采用随机生长四参数生成法构造黏土微观结构[J]. 浙江大学学报: 工学版, 2010, 44(10): 1897-1901.
20 Shen Linfang , Wang Zhiliang , Li Shaojun . Numerical simulation for seepage field of soil based on mesoscopic structure reconfiguration technology[J]. Rock and Soil Mechanics, 2015, 36(11): 3307-3314.
申林方,王志良,李邵军 . 基于土体细观结构重构技术的渗流场数值模拟[J]. 岩土力学, 2015, 36(11): 3307-3314.
21 Morrow N R . Interfacial Phenomena in Petroleum Recovery[M]. New York: Marcel Dekker Inc, 1991.
22 Wei Yuanlong , Yang Chunhe , Guo Yintong , et al . Experimental research on deformation and fracture characteristics of shale under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2262-2271.
魏元龙, 杨春和, 郭印同, 等 . 三轴循环荷载下页岩变形及破坏特征试验研究[J]. 岩土工程学报, 2015, 37(12): 2262-2271.
23 Costa A .Permeability-porosity relationship:A reexamination of the Kozeny-Carman equation based on a fractal pore-space geometry assumption[J].Geophysical Research Letters, 2006, 33(2): L02318.
24 Li Rongqiang , Gao Ying , Yang Yongfei ,et al . Experimental study on the pressure sensitive effects of cores based on CT scanning[J]. Petroleum Drilling Techniques, 2015, 43(5): 37-43.
李荣强, 高莹, 杨永飞, 等 . 基于CT扫描的岩心压敏效应实验研究[J]. 石油钻探技术, 2015, 43(5): 37-43.
[1] 吴松涛, 林士尧, 晁代君, 翟秀芬, 王晓瑞, 黄秀, 徐加乐. 基于孔隙结构控制的致密砂岩可动流体评价——以鄂尔多斯盆地华庆地区上三叠统长6致密砂岩为例[J]. 天然气地球科学, 2019, 30(8): 1222-1232.
[2] 张晗. 四川盆地龙马溪组页岩储层缝网导流能力优化[J]. 天然气地球科学, 2019, 30(7): 955-962.
[3] 谢卫东, 王猛, 代旭光, 王彦迪. 山西河东煤田中—南部煤系页岩气储层微观特征[J]. 天然气地球科学, 2019, 30(4): 512-525.
[4] 孙兵华, 张廷山, . 鄂尔多斯盆地张家湾地区长7页岩油气储集特征及其影响因素[J]. 天然气地球科学, 2019, 30(2): 274-284.
[5] 李文镖, 卢双舫, 李俊乾, 张鹏飞, 陈晨, 王思远. 南方海相页岩物质组成与孔隙微观结构耦合关系[J]. 天然气地球科学, 2019, 30(1): 27-38.
[6] 姜瑞忠, 原建伟, 崔永正, 张伟, 张福蕾, 张海涛, 毛埝宇. 基于TPHM的页岩气藏多级压裂水平井产能分析[J]. 天然气地球科学, 2019, 30(1): 95-101.
[7] 张世铭, 王建功, 张小军, 张婷静, 曹志强, 杨麟科. 酒西盆地间泉子段储层流体赋存及渗流特征[J]. 天然气地球科学, 2018, 29(8): 1111-1119.
[8] 程鸣, 傅雪海, 张苗, 程维平, 渠丽珍. 沁水盆地古县区块煤系“三气”储层覆压孔渗实验对比研究[J]. 天然气地球科学, 2018, 29(8): 1163-1171.
[9] 刘喜杰,马遵敬,韩冬,王海燕,马立涛,葛东升. 鄂尔多斯盆地东缘临兴区块致密砂岩优质储层形成的主控因素[J]. 天然气地球科学, 2018, 29(4): 481-490.
[10] 史文洋,姚约东,程时清,石志良,高敏. 裂缝性低渗透碳酸盐岩储层酸压改造油井动态压力特征[J]. 天然气地球科学, 2018, 29(4): 586-596.
[11] 孟凡坤,雷群,徐伟,何东博,闫海军,邓惠. 应力敏感碳酸盐岩复合气藏生产动态特征分析[J]. 天然气地球科学, 2018, 29(3): 429-436.
[12] 王小垚,曾联波,周三栋,史今雄,田鹤. 低阶煤储层微观孔隙结构的分形模型评价[J]. 天然气地球科学, 2018, 29(2): 277-288.
[13] 尹娜, 薛莲花, 姜呈馥, 杨爽, 高潮, 陈国俊. 富有机质页岩生烃阶段孔隙演化及分形特征[J]. 天然气地球科学, 2018, 29(12): 1817-1828.
[14] 靳子濠, 周立宏, 操应长, 付立新, 李宏军, 楼达, 孙沛沛, 冯建园, 远光辉, 王铸坤. 渤海湾盆地黄骅坳陷二叠系砂岩储层储集特征及成岩作用[J]. 天然气地球科学, 2018, 29(11): 1595-1607.
[15] 杨浩珑,向祖平,袁迎中,李龙. 低渗气藏压裂气井稳态产能计算新方法[J]. 天然气地球科学, 2018, 29(1): 151-157.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!