天然气地球科学

• 天然气开发 • 上一篇    下一篇

四川盆地龙马溪组页岩气缝网压裂改造甜点识别新方法

沈骋,赵金洲,任岚,范宇   

  1. 1.中国石油西南油气田分公司页岩气研究院,四川 成都 610051;
    2.“油气藏地质及开发工程”国家重点实验室,西南石油大学,四川 成都 610500
  • 收稿日期:2019-02-14 修回日期:2019-03-16 出版日期:2019-07-10
  • 通讯作者: 赵金洲(1962-),男,湖北仙桃人,教授,博士生导师,主要从事油气藏压裂酸化理论与应用研究和教学工作. E-mail:zhaojz@swpu.edu.cn.
  • 作者简介:沈骋(1990-),男,四川成都人,工程师,博士,主要从事油气田储层评价与增产技术研究.E-mail:Shencheng2018@petrochina.com.cn.
  • 基金资助:
    国家自然科学基金项目“页岩地层动态随机裂缝控制机理与无水压裂理论”(编号:51490653)资助.

A new method to identify fracturing sweet spot in Longmaxi Formation of Sichuan Basin,SW China

Shen Cheng,Zhao Jin-Zhou,Ren Lan,Fan Yu   

  1. 1.Shale Gas Research Institute,PetroChina Southwest Oil & Gas Field Company,Chengdu 610051,China;
    2.State Key Laboratory of Oil and Gas Reservoir Geology and Exploration,Southwest Petroleum University,Chengdu 610500,China
  • Received:2019-02-14 Revised:2019-03-16 Online:2019-07-10
  • Contact: Zhao Jinzhou(1962-), Male, Professor, Ph.D supervisor, Mainly engaged in fracturing and acidification theory and application research and teaching of oil and gas reservoirs. E-mail:zhaojz@swpu.edu.cn.
  • About author:Shen Cheng(1990-), Male, Engineer, Ph.D, Mainly engaged in oil and gas reservoir evaluation and increase production technology research. E-mail:Shencheng2018@petrochina.com.cn.
  • Supported by:

    Supported by the National Natural Science Foundation of China “Control mechanism of dynamic random fracture and theory of waterless fracturing in shale formation” (Grant No. 51490653).

摘要: 压裂改造甜点的准确识别是页岩气储层水力压裂实现经济产能的关键之一。以四川盆地奥陶系五峰组—志留系龙马溪组一段页岩为研究对象,考虑储层成层性、脆性矿物和天然弱面发育特征等压裂改造关键影响因素,引入综合脆性指数、储层层理与裂缝指数和缝网扩展指数,整合为缝网压裂甜点指数,建立四川盆地龙马溪组页岩气缝网压裂改造甜点识别方法。研究表明:储层层理与裂缝指数介于0.5~0.6之间,综合脆性指数介于0.55~0.6之间,缝网扩展指数大于0.6,缝网压裂甜点指数大于0.55的储层,层理发育明显、基质碳酸盐矿物较多、天然裂缝发育适度且充填程度高的页岩可获得较好压裂改造效果,最具改造潜力,能有效改造储层实现缝网压裂,是体积压裂改造的甜点。研究成果与矿场微地震监测和产气剖面解释结果较为一致,对储层压裂改造的选层选段和压裂方案设计具有理论支撑和现场指导意义。

关键词: 缝网压裂, 甜点识别, 储层改造体积(SRV), 四川盆地, 龙马溪组

Abstract: The key to obtain economic productivity on shale gas reservoir stimulation is to identify the fracturing sweet spots.Considered some factors on stimulation such as layered property,brittle minerals contents and natural weak plane feature which are in Wufeng Formation to Longmaxi Formation in Sichuan Basin,layered index,brittleness index and fracture network probability index had been proposed to establish the network-fracturing sweet spot index and a method to identify fracturing sweet spot based on shale facies.It was concluded that shale reservoir,with layered index between 0.5 and 0.6,brittleness index between 0.55 and 0.6,fracture network probability index between 0.6 and 1.0,network-fracturing sweet spot index between 0.55 and 1.0,as the fracturing sweet spot,has preponderant stimulation potential and efficient network-fracturing due to visible layered property,and high proportion of carbonate.Moderate development of packed fractures could obtain better stimulation.The conclusions agree with the result of micro-seismic monitoring and production profile.The method could be a theoretical foundation and live guidance for providing strategy and design scheme for fracturing.

Key words: Network fracturing, Sweet spot identification, SRV, Sichuan Basin, Longmaxi Formation

中图分类号: 

  • TE357
[1]Xie Jun.Rapid shale gas development accelerated by the progress in key technologies:A case study of the Changning-Weiyuan national shale gas demonstration zone[J].Natural Gas Industry,2017,37(12):1-10.
谢军.关键技术进步促进页岩气产业快速发展——以长宁—威远国家级页岩气示范区为例[J].天然气工业,2017,37(12):1-10.
[2]Zhao Jinzhou,Ren Lan,Shen Cheng,et al.Latest research progresses in network fracturing theories and technologies for shale gas reservoirs[J].Natural Gas Industry,2018,38(3):1-14.
赵金洲,任岚,沈骋,等.页岩气缝网压裂理论与技术研究新进展[J].天然气工业,2018,38(3):1-14.
[3]Xie Jun,Zhang Haomiao,She Chaoyi,et al.Practice of geology-engineering integration in Changning state shale gas demonstration area[J].China Petroleum Exploration,2017,22(1):21-28.
谢军,张浩淼,佘朝毅,等.地质工程一体化在长宁国家级页岩气示范区中的实践[J].中国石油勘探,2017,22(1):21-28.
[4]Ma Xinhua,Xie Jun.The progress and prospects of shale gas exploration and exploitation in southern Sichuan Basin,NW China[J].Petroleum Exploration and Development,2018,45(1):161-169.
马新华,谢军.川南地区页岩气勘探开发进展及发展前景[J].石油勘探与开发,2018,45(1):161-169.
[5][Guo Xusheng,Hu Dongfeng,Wei Zhihong,et al.Discovery and exploration for Fuling shale gas field[J].China Petroleum Exploration,2016,21(3):24-37.
郭旭升,胡东风,魏志红,等.涪陵页岩气田的发现与勘探认识[J].中国石油勘探,2016,21(3):24-37.
[6]Liang Xing,Wang Gaocheng,Xu Zhengyu,et al.Comprehensive evaluation technology for shale gas sweet spots in the complex marine mountains,south China:A case study from Zhaotong national shale gas demonstration zone[J].Natural Gas Industry,2016,36(1):33-42.
梁兴,王高成,徐政语,等.中国南方海相复杂山地页岩气储层甜点综合评价技术——以昭通国家级页岩气示范区为例[J].天然气工业,2016,36(1):33-42.
[7]Shen Cheng,Ren Lan,Zhao Jinzhou,et al.New comprehensive index and its application on evaluation in shale gas reservoirs:A case study of Upper Ordovician Wufeng Formation to Lower Silurian Longmaxi Formation in southeastern margin of Sichuan Basin[J].Petroleum Exploration & Development,2017,44(4):649-658.
沈骋,任岚,赵金洲,等.页岩储集层综合评价因子及其应用—以四川盆地东南缘焦石坝地区奥陶系五峰组—志留系龙马溪组为例[J].石油勘探与开发,2017,44(4):649-658.
[8]Qian Bin,Zhang Juncheng,Zhu Juhui,et al.Application of zipper fracturing of horizontal cluster wells in the Changning shale gas pilot zone,Sichuan Basin[J].Natural Gas Industry,2015,35(1):81-84.
钱斌,张俊成,朱炬辉,等.四川盆地长宁地区页岩气水平井组“拉链式”压裂实践[J].天然气工业,2015,35(1):81-84.
[9]Liu Zhishui,Sun Zandong.New brittleness indexes and their application in shale/clay gas reservoir prediction[J].Petroleum Exploration and Development,2015,42(1):117-124.
刘致水,孙赞东.新型脆性因子及其在泥页岩储集层预测中的应用[J].石油勘探与开发,2015,42(1):117-124.
[10]Lin Ran.Dynamic Simulation of Stimulated Reservoir Volume(SRV)During Hydraulic Fracturing in Horizontal Shale Gas Well[D].Chengdu:Southwest Petroleum University,2018.
林然.页岩压裂水平井SRV动态模拟的理论研究[D].成都:西南石油大学,2018.
[11] Ren Lan,Zhao Jinzhou,Lin Ran,et al.A dynamic evolution model for stimulated reservoir volume of the staged fractured horizontal well in shale gas reservoir[J].Applied Mathematics and Mechanics,2018,39(10):1099-1114.
任岚,赵金洲,林然,等.页岩压裂水平井增产改造体积的动态演化模型[J].应用数学和力学,2018,39(10):1099-1114.
[12]Zhao Jinzhou,Chen Xiyu,Li Yongming,et al.Numerical simulation of multi-stage fracturing and optimization of perforation in a horizontal well[J].Petroleum Exploration and Development,2017,44(1):117-124.
赵金洲,陈曦宇,李勇明,等.水平井分段多簇压裂模拟分析及射孔优化[J].石油勘探与开发,2017,44(1):117-124.
[13]Xie Jun.Practice and achievement of the Changning-Weiyuan shale gas national demonstration project construction[J].Natural Gas Industry,2018,38(2):1-7.
谢军.长宁—威远国家级页岩气示范区建设实践与成效[J].天然气工业,2018,38(2):1-7.
[14]Zhao Jinzhou,Ren Lan,Hu Yongquan.Controlling factors of hydraulic fractures extending into network in shale formations[J].Journal of Southwest Petroleum University:Science & Technology Edition,2013,35(1):1-9.
赵金洲,任岚,胡永全.页岩储层压裂缝成网延伸的受控因素分析[J].西南石油大学学报:自然科学版,2013,35(1):1-9.
[15]Zhao Jinzhou,Xu Wenjun,Li Yongming,et al.A new method for fracability evaluation of shale-gas reservoirs[J].Natural Gas Geoscience,2015,26(6):1165-1172.
赵金洲,许文俊,李勇明,等.页岩气储层可压性评价新方法[J].天然气地球科学,2015,26(6):1165-1172.
[16]Shen Cheng.Research on geological influence mechanisms for fracture network forming and its application on reservoir comprehensive evaluation[D].Chengdu:Southwest Petroleum University,2018.
沈骋.页岩缝网形成的地质影响机制及储层综合评价研究[D].成都:西南石油大学,2018.
[17]Deng Jixin,Tang Zhengyuan,Li Yue,et al.The influence of the diagenetic process on seismic rock physical properties of Wufeng Formation and Longmaxi Formation shale[J].Chinese Journal of Geophysics,2018,61(2):659-672.
邓继新,唐郑元,李越,等.成岩过程对五峰组—龙马溪组页岩地震岩石物理特征的影响[J].地球物理学报,2018,61(2):659-672.
[18]Xiong Xiaojun,Li Xiang,Liu Yang,et al.Shear wave velocity estimation method by the porosity classification based on the self-consistent model[J].Geophysical Prospecting for Petroleum,2017,56(2):179-184.
熊晓军,李翔,刘阳,等.基于孔隙分类理论的自相容模型横波速度预测方法[J].石油物探,2017,56(2):179-184.
[19]Ou Chenghua,Li Chaochun.3D discrete network modeling of shale bedding fractures based on lithofacies characterization[J].Petroleum Exploration and Development,2017,44(2):309-318.
欧成华,李朝纯.页岩岩相表征及页理缝三维离散网络模型[J].石油勘探与开发,2017,44(2):309-318.
[20]Dong Dazhong,Shi Zhensheng,Sun Shasha,et al.Factors controlling microfractures in black shale:A case study of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Shuanghe Profile,Changning area,Sichuan Basin,SW China[J].Petroleum Exploration and Development,2018,45(5):1-12.
董大忠,施振生,孙莎莎,等.黑色页岩微裂缝发育控制因素——以长宁双河剖面五峰组—龙马溪组为例[J].石油勘探与开发,2018,45(5):1-12.
[21]Zhang Dongxiao,Yang Tingyun.An overview of shale-gas production[J].Acta Petrolei Sinica,2013,34(4):792-801.
张东晓,杨婷云.页岩气开发综述[J].石油学报,2013,34(4):792-801.
[22]Olson J E,Bahorich B,Holder J.Examining hydraulic fracture natural fracture interaction in hydrostone block experiments[C]∥SPE Hydraulic Fracturing Technology Conference,6-8 February 2012,The Woodlands,Texas,USA.DOI:http:∥dx.doi.org/10.2118/152618-MS.
[23]Zhao Wentao,Hou Guiting,Zhang Juzeng,et al.Study on the development law of structural fractures of Yanchang Formation in Longdongarea,Ordos Basin[J].Acta Scientiarum Naturalium Universitatis Pekinensis,2015,51(6):1047-1058.
赵文韬,侯贵廷,张居增,等.层厚与岩性控制裂缝发育的力学机理研究——以鄂尔多斯盆地延长组为例[J].北京大学学报:自然科学版,2015,51(6):1047-1058.
[24]Hu Degao,Liu Chao.Geological factors of well fracability in Fuling shale gas field,Sichuan Basin[J].Petroleum Geology & Experiment,2018,40(1):20-24.
胡德高,刘超.四川盆地涪陵页岩气田单井可压性地质因素研究[J].石油实验地质,2018,40(1):20-24.
[25]Chen Jianguo,Deng Jingen,Yuan Junliang,et al.Determination of fracture toughness of modes I and Ⅱ of shale formation[J].Chinese Journal of Rock Mechanics and Engineering,2015,34(6):1101-1105.
陈建国,邓金根,袁俊亮,等.页岩储层I型和Ⅱ型断裂韧性评价方法研究[J].岩石力学与工程学报,2015,34(6):1101-1105.
[26]Zhao Jinzhou,Li Yongming,Wang Song,et al.Simulation of a complex fracture network Influenced by natural fractures[J].Natural Gas Industry,2014,34(1):68-73.
赵金洲,李勇明,王松,等.天然裂缝影响下的复杂压裂裂缝网络模拟[J].天然气工业,2014,34(1):68-73.
[1] 赵正望, 唐大海, 王小娟, 陈双玲. 致密砂岩气藏天然气富集高产主控因素探讨——以四川盆地须家河组为例[J]. 天然气地球科学, 2019, 30(7): 963-972.
[2] 杨振恒, 韩志艳, 腾格尔, 熊亮, 申宝剑, 张庆珍, 史洪亮, 魏力民, 李艳芳, . 四川盆地南部五峰组—龙马溪组页岩地质甜点层特征——以威远—荣昌区块为例[J]. 天然气地球科学, 2019, 30(7): 1037-1044.
[3] 苟启洋, 徐尚, 郝芳, 舒志国, 杨峰, 陆扬博, 张爱华, 王雨轩, 程璇, 青加伟, 高梦天. 基于灰色关联的页岩储层含气性综合评价因子及应用——以四川盆地焦石坝区块为例[J]. 天然气地球科学, 2019, 30(7): 1045-1052.
[4] 周国晓, 魏国齐, 胡国艺. 四川盆地龙岗与元坝气田陆相油气系统差异[J]. 天然气地球科学, 2019, 30(6): 809-818.
[5] 倪云燕, 廖凤蓉, 姚立邈, 高金亮, 张蒂嘉, . 川中地区须家河组天然气氢同位素特征及其对水体咸化的指示意义[J]. 天然气地球科学, 2019, 30(6): 880-896.
[6] 郭芪恒, 金振奎, 耿一凯, 赵建华, 常睿, 崔学敏, 王金艺. 四川盆地龙马溪组页岩中碳酸盐矿物特征及对储集性能的影响[J]. 天然气地球科学, 2019, 30(5): 616-625.
[7] 王秀平, 牟传龙, 肖朝晖 , 郑斌嵩 , 陈尧 , 王启宇. 鄂西南地区五峰组—龙马溪组连续沉积特征[J]. 天然气地球科学, 2019, 30(5): 635-651.
[8] 邓宇, 曾庆才, 陈胜, 管全中, 郭晓龙, 贺佩. 四川盆地威远地区五峰组—龙马溪组页岩TOC含量地震定量预测方法及应用[J]. 天然气地球科学, 2019, 30(3): 414-422.
[9] 刘树根, 孙玮, 宋金民, 雍自权, 王浩, 赵聪. 四川盆地中三叠统雷口坡组天然气勘探的关键地质问题[J]. 天然气地球科学, 2019, 30(2): 151-167.
[10] 梁霄, 童明胜, 梁锋, 邓宾, 刘微, 李飞, 马文辛, 刘博文. 晚二叠世盐亭—蓬溪拉张槽东段特征及其对四川盆地中部长兴组油气成藏的控制作用[J]. 天然气地球科学, 2019, 30(2): 176-189.
[11] 何龙, 王云鹏, 陈多福, 王钦贤, 王成. 重庆南川地区五峰组—龙马溪组黑色页岩沉积环境与有机质富集关系[J]. 天然气地球科学, 2019, 30(2): 203-218.
[12] 郭旭升. 四川盆地涪陵平桥页岩气田五峰组—龙马溪组页岩气富集主控因素[J]. 天然气地球科学, 2019, 30(1): 1-10.
[13] 赵文韬,荆铁亚,吴斌,周游,熊鑫. 断裂对页岩气保存条件的影响机制——以渝东南地区五峰组—龙马溪组为例[J]. 天然气地球科学, 2018, 29(9): 1333-1344.
[14] 王朋飞,姜振学,吕鹏,金璨,李鑫,黄璞. 重庆周缘下志留统龙马溪组和下寒武统牛蹄塘组页岩有机质孔隙发育及演化特征[J]. 天然气地球科学, 2018, 29(7): 997-1008.
[15] 邱 振,邹才能,李熙喆,王红岩,董大忠,卢斌,周尚文,施振生,冯子齐,张梦琪. 论笔石对页岩气源储的贡献——以华南地区五峰组—龙马溪组笔石页岩为例[J]. 天然气地球科学, 2018, 29(5): 606-615.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王先彬;妥进才;周世新;李振西;张铭杰;闫宏;. 论天然气形成机制与相关地球科学问题[J]. 天然气地球科学, 2006, 17(1): 7 -13 .
[2] 倪金龙;夏斌;. 济阳坳陷坡折带组合类型及石油地质意义[J]. 天然气地球科学, 2006, 17(1): 64 -68 .
[3] 唐友军,文志刚,窦立荣,徐佑德. 一种估算原油成熟度的新方法[J]. 天然气地球科学, 2006, 17(2): 160 -162 .
[4] Cramer B;Faber E;Gerling P;Krooss B M;刘全有(译). 天然气稳定碳同位素反应动力学研究――关于干燥、开放热解实验中的思考[J]. 天然气地球科学, 2002, 13(5-6): 8 -18 .
[5] 郭精义,杨占龙,黄刚,杨立国. 潜江凹陷新农地区沉积微相特征与岩性油气藏[J]. 天然气地球科学, 2006, 17(2): 249 -255 .
[6] 付广;孟庆芬;. 断层封闭性影响因素的理论分析[J]. 天然气地球科学, 2002, 13(3-4): 40 -44 .
[7] 杨蕾;同登科;. 变形介质煤层气双渗流动压力分析[J]. 天然气地球科学, 2006, 17(3): 429 -433 .
[8] 郭克园;蔡国刚;罗海炳;王智勇;常津焕;. 辽河盆地欧利坨子地区火山岩储层特征及成藏条件[J]. 天然气地球科学, 2002, 13(3-4): 60 -66 .
[9] 杨宪彰;彭更新;雷刚林;马玉杰;黄少英;. 库车山地高陡复杂构造圈闭研究思路与方法[J]. 天然气地球科学, 2006, 17(4): 538 -542 .
[10] И Д Полякова等(俄罗斯);姜家生(译). 深层含油气潜势[J]. 天然气地球科学, 2002, 13(5-6): 38 -40 .