天然气地球科学

• 天然气开发 • 上一篇    下一篇

基于连续拟稳定法的页岩气体积压裂水平井产量计算

曾凡辉,王小魏,郭建春,郑继刚,李亚州,向建华   

  1. 1.西南石油大学油气藏地质及开发工程国家重点实验室,四川 成都 610500;
    2.长庆油田分公司第十二采油厂,陕西 西安 710200;
    3.中国石油天然气股份有限公司西南油气田分公司,四川 成都 610017
  • 收稿日期:2018-01-03 修回日期:2018-06-02 出版日期:2018-07-10 发布日期:2018-07-10
  • 作者简介:曾凡辉(1980-),男,四川成都人,副教授,博士,主要从事油气藏开采理论研究和现场应用工作. E-mail:zengfanhui023024@126.com.
  • 基金资助:

    国家自然科学基金(编号:51504203;51525404);“十三五”国家科技重大专项“大型油气田及煤层气开发”(编号:2017ZX05037-004)资助.

A productivity model of volume fractured horizontal wells in shale gas based on the continuous succession pseudo-steady state method

Zeng Fan-hui,Wang Xiao-wei,Guo Jian-chun,Zheng Ji-gang,Li Ya-zhou,Xiang Jian-hua   

  1. 1.State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation in Southwest Petroleum University,Chengdu 610500,China;
    2.No.12 Oil Production Plant,Changqing Oilfield Company,Xi’an 710200,China; 
    3.CNPC Southwest Oil and Gas Field Company,Chengdu 610017,China
  • Received:2018-01-03 Revised:2018-06-02 Online:2018-07-10 Published:2018-07-10

摘要: 水平井体积压裂是开发页岩气藏的关键技术。体积压裂后,未改造区域的流动为受微纳米孔隙介质控制的非线性渗流,而改造区域的流动则是由微米级裂缝网络控制的达西渗流。综合考虑页岩气藏体积压裂后的多尺度流动、页岩气解吸附、扩散等特点,建立了耦合未改造区域和改造区域流动的稳态产量计算模型;在此基础上,首次运用连续拟稳定法,考虑压力波不稳定扩散,结合物质平衡方程建立了页岩储层体积压裂水平井非稳态产量计算方法,并对页岩气体积压裂水平井非稳态产量的影响因素进行了分析。结果表明:基于连续拟稳定法建立的产量预测模型具有求解过程简单、计算速度快,与数值模拟结果吻合程度高的特点;页岩气的解吸效应主要影响生产中后期的产量;随着体积压裂区半径、压裂区渗透率、扩散系数、朗格缪尔体积的增大,页岩气井产能增大,且增加幅度逐渐减小;朗格缪尔压力对产量的影响较小。该方法为页岩气体积压裂水平井非稳态产量的计算提供了理论依据。

关键词: 页岩气藏, 体积压裂水平井, 多尺度流动, 连续拟稳定法, 非稳态产量, 因素分析

Abstract: The volume fractured horizontal well is the key technology for developing shale gas reservoirs.After the stimulated reservoir volume is fractured,the gas flow in matrix is non-linear seepage controlled by the nano-scale pores,while the seepage in stimulated region is converted into Darcy flow controlled by the micro-scale fracture network.In this paper,the steady productivity model of volume fractured horizontal well was firstly established by comprehensively considering the multi-scale flowing states,shale gas desorption and diffusion,which coupled flows in matrix and stimulated region.On this basis,for the first time,a transient productivity calculation model combined with the material balance equation was obtained with the continuous succession pseudo-steady state method (SPSS),which considered the unstable propagation of pressure wave.And the horizontal well productivity prediction and factors analysis was carried out by using the SPSS.The results show that the model has the advantages of simple process,fast calculation speed and high agreement with numerical simulation results.Furthermore,it can be found that the seepage of shale gas is an unstable process.The pressure wave first reaches the boundary of the stimulated region,and then propagates to the reservoir boundary.During the production process,the desorption effect of shale gas is the key factor affecting the middle and late stage production of gas wells.With the increase of the radius and permeability of the stimulated region,the diffusion coefficient and Langmuir volume,the productivity of shale gas wells would increase,while the increasing rate would decrease.And the effect of Langmuir pressure on productivity is less.It is concluded that this method provides a theoretical basis for the calculation of transient productivity of shale gas fractured horizontal wells.

Key words: Shale gas reservoir, Volume fractured horizontal wells, Multi-scale flow, Continuous succession of pseudo-steady states method, Transient productivity, Factors analysis

中图分类号: 

  • TE31

[1]Zou Caineng,Dong Dazhong,Wang Shejiao,et al.Geological characteristics,formation mechanism and resource potential of shale gas in China[J].Petroleum Exploration and Development,2010,37(6):641-653.
邹才能,董大忠,王社教,等.中国页岩气形成机理、地质特征及资源潜力[J].石油勘探与开发,2010,37(6):641-653.
[2]Chen Zuo,Xue Chengjin,Jiang Tingxue,et al.Proposals for the application of fracturing by stimulated reservoir volume(SRV)in shale gas wells in China[J].Natural Gas Industry,2010,30(10):30-32.
陈作,薛承瑾,蒋廷学,等.页岩气井体积压裂技术在我国的应用建议[J].天然气工业,2010,30(10):30-32.
[3]Deng J,Zhu W,Ma Q.A new seepage model for shale gas reservoir and productivity analysis of fractured well[J].Fuel,2014,124(15):232-240.
[4]Clarkson C R.Production data analysis of unconventional gas wells:Review of theory and best practices[J].International Journal of Coal Geology,2013,109(4):101-146.
[5]Gao Shusheng,Liu Huaxun,Ye Liyou,et al.A coupling model for gas diffusion and seepage in SRV section of shale gas reservoirs[J].Natural Gas Industry,2017,37(1):97-104.
高树生,刘华勋,叶礼友,等.页岩气藏SRV区域气体扩散与渗流耦合模型[J].天然气工业,2017,37(01):97-104.
[6]Duan Yonggang,Wei Mingqiang,Li Jianqiu,et al.Shale gas seepage mechanism and fractured wells’ production evaluation[J].Journal of Chongqing University:Natural Science Edition,2011,34(4):62-66.
段永刚,魏明强,李建秋,等.页岩气藏渗流机理及压裂井产能评价[J].重庆大学学报,2011,34(4):62-66.
[7]Zhu Weiyao,Qi Qian.Study on the multi-scale nonlinear flow mechanism and model of shale gas[J].Scientia Sinica Technologica,2016,46(2):111-119.
朱维耀,亓倩.页岩气多尺度复杂流动机理与模型研究[J].中国科学:技术科学,2016,46(2):111-119.
[8]Ozkan E,Raghavan R S,Apaydin O G.Modeling of fluid transfer from shale matrix to fracture network[C]∥SPE Annual Technical Conference and Exhibition.Florence,Italy:Society of Petroleum Engineers,2010:1-18.
[9]Swami V.Shale gas reservoir modeling:From nanopores to laboratory[C]∥SPE Annual Technical Conference and Exhibition.San Antonio,Texas:Society of Petroleum Engineers,2012:1-12.
[10]Zhang D,Zhang L,Zhao Y,et al.A composite model to analyze the decline performance of a multiple fractured horizontal well in shale reservoirs[J].Journal of Natural Gas Science & Engineering,2015,26:999-1010.
[11]Su Y,Zhang Q,Wang W,et al.Performance analysis of a composite dual-porosity model in multi-scale fractured shale reservoir[J].Journal of Natural Gas Science & Engineering,2015,26:1107-1118
[12]Zhao Y L,Zhang L H,Luo J X,et al.Performance of fractured horizontal well with stimulated reservoir volume in unconventional gas reservoir[J].Journal of Hydrology,2014,512(10):447-456.
[13]Shahamat M S,Mattar L,Aguilera R.A physics-based method for production data analysis of tight and shale petroleum reservoirs using succession of pseudo-steady states[J].SPE Reservoir Evaluation & Engineering,2015,18(4):508-522.
[14]Beskok A,Karniadakis G E.Report:A model for flows in channels,pipes,and ducts at micro and nanoscales[J].Microscale Thermophysical Engineering,1999,3(1):43-77.
[15]Soeder.Porosity and permeability of Eastern Devonian gas shale[J].SPE Formation Evaluation,1988,3(1):116-124.
[16]Javadpour F,Fisher D,Unsworth M.Nanoscale gas flow in shale gas ediments[J].Journal of Canadian Petroleum Technology,2007,46(10):55-61.
[17]Roy S,Raju R,Chuang H F,et al.Modeling gas flow through microchannels and nanopores[J].Journal of Applied Physics,2003,93(8):4870-4879.
[18]Nelson P H.Pore-throat sizes in sandstones,tight sandstones,and shales[J].AAPG Bulletin,2009,93(3):329-340.
[19]Faruk C.A triple-mechanism fractal model with hydraulic dispersion for gas permeation in tight reservoirs[C]∥SPE Petroleum Conference and Exhibition.Villahermosa,Mexico:Society of Petroleum Engineers,2002:1-6.
[20]Chapuis R P,Aubertin M.Predicting the coefficient of permeability of soils using the Kozeny-Carman equation[J].Canadian Geotechnical,2003,40(3):616-628.
[21]Zhu Weiyao,Deng Jia,Yang Baohua,et al.Seepagemodel of shale gas reservoir and productivity analysis of fractured vertical wells[J].Mechanics and Engineering,2014,36(2):156-160.朱维耀,邓佳,杨宝华,等.页岩气致密储层渗流模型及压裂直井产能分析[J].力学与实践,2014,36(2):156-160.
[22]Civan F,Rai C S,Sondergeld C H.Shale-gas permeability and diffusivity inferred by improved formulation of relevant retention and transport mechanisms[J].Transport in Porous Media,2011,86(3):925-944.
[23]Kuchuk F J.Radius of investigation for reserve estimation from pressure transient well tests[C]∥SPE Middle East Oil and Gas Show and Conference.Manama,Bahrain:Society of Petroleum Engineers,2009:1-21.
[24]Zhang Liehui,Chen Guo,Zhao Yulong,et al.A modified material balance equation for shale gas reservoirs and acalculation method of shale gas reservoirs[J].Natural Gas Industry,2013,33(12):66-70.
张烈辉,陈果,赵玉龙,等.改进的页岩气藏物质平衡方程及储量计算方法[J].天然气工业,2013,33(12):66-70.
[25]Sang Y,Chen H,Yang S,et al.A new mathematical model considering adsorption and desorption process for productivity prediction of volume fractured horizontal wells in shale gas reservoirs[J].Journal of Natural Gas Science & Engineering,2014,19(7):228-236.
[26]Cheng Y.Pressure transient characteristics of hydraulically fractured horizontal shale gas wells[C]∥SPE Eastern Regional Meeting.Columbus,Ohio:Society of Petroleum Engineers,2011:1-10.

[1] 谢维扬, 刘旭宁, 吴建发, , 张鉴, 吴天鹏, 陈满. 页岩气水平井组产量递减特征及动态监测[J]. 天然气地球科学, 2019, 30(2): 257-265.
[2] 许崇祯, 张公社, 殷嘉伟, 纪国法, 李新发. 考虑解吸—吸附的页岩气藏压裂水平井综合渗流模型[J]. 天然气地球科学, 2019, 30(1): 111-118.
[3] 王琰琛, 陈军, 邓亚, 肖聪. 页岩气藏体积压裂水平井渗流模型[J]. 天然气地球科学, 2018, 29(12): 1795-1802.
[4] 谢维扬,李晓平,张烈辉,王俊超,程子洋,袁淋. 页岩气多级压裂水平井不稳定产量递减探讨[J]. 天然气地球科学, 2015, 26(2): 384-390.
[5] 苏玉亮,张琪,张敏,王文东. 页岩气多重复合模型流动规律研究[J]. 天然气地球科学, 2015, 26(12): 2388-2394.
[6] 谢维扬, 李晓平. 水力压裂缝导流的页岩气藏水平井稳产能力研究[J]. 天然气地球科学, 2012, 23(2): 387-392.
[7] 王明磊 张廷山. 赤水地区下三叠统嘉陵江组嘉五1亚段岩相古地理研究[J]. 天然气地球科学, 2009, 20(1): 70-75.
[8] 何家雄;李明兴;陈伟煌;. 莺歌海盆地热流体上侵活动与天然气运聚富集关系探讨[J]. 天然气地球科学, 2000, 11(6): 29-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵应成,周晓峰,王崇孝,王满福,郭娟娟 . 酒西盆地青西油田白垩系泥云岩裂缝油藏特征和裂缝形成的控制因素[J]. 天然气地球科学, 2005, 16(1): 12 -15 .
[2] 郑建京;吉利明;孟仟祥;. 准噶尔盆地天然气地球化学特征及聚气条件的讨论[J]. 天然气地球科学, 2000, 11(4-5): 17 -21 .
[3] 付广;杨勉;. 盖层发育特征及对油气成藏的作用[J]. 天然气地球科学, 2000, 11(3): 18 -24 .
[4] 陈建阳,张志杰,于兴河 . AVO技术在水合物研究中的应用及应注意的问题[J]. 天然气地球科学, 2005, 16(1): 123 -126 .
[5] 施立志;林铁锋;王震亮;王卓卓;姚勇;. 库车坳陷下白垩统天然气运聚系统与油气运移研究[J]. 天然气地球科学, 2006, 17(1): 78 -83 .
[6] 付广;孟庆芬;. 断层封闭性影响因素的理论分析[J]. 天然气地球科学, 2002, 13(3-4): 40 -44 .
[7] 杨蕾;同登科;. 变形介质煤层气双渗流动压力分析[J]. 天然气地球科学, 2006, 17(3): 429 -433 .
[8] 周惠文,曹正林,杜斌山. 含气特征曲线重构技术在致密含气砂岩储层预测中的应用[J]. 天然气地球科学, 2006, 17(5): 723 -726 .
[9] 王晓梅,张 群, 张培河, 赵俊峰,陈鸿春. 煤层气储层数值模拟研究的应用[J]. 天然气地球科学, 2004, 15(6): 664 -668 .
[10] 田继军, 陈振林, 王雪莲, 田建锋. 伏龙泉气田成藏规律分析[J]. 天然气地球科学, 2004, 15(5): 508 -810 .