天然气地球科学

• 非常规天然气 • 上一篇    下一篇

多峰孔径分布拟合模型在页岩孔隙结构分析中的应用

林伯韬,陈渊,陈勉,金衍,蒋峥   

  1. 1.中国石油大学(北京)油气资源与探测国家重点实验室,北京10229;
    2.北京大学工学院,北京 100871
  • 收稿日期:2017-11-01 修回日期:2018-01-19 出版日期:2018-03-10 发布日期:2018-03-10
  • 作者简介:林伯韬(1983-),男,福建武平人,副教授,博导,博士,主要从事稠油油砂地质力学和页岩岩石力学研究.E-mail:linbotao@vip.163.com.
  • 基金资助:
    〖HTH〗收稿日期〖HTSS〗:;
    国家自然科学基金重大项目“页岩油气高效开发基础理论研究”(编号:5190650)资助.
     

Application of multi-peak pore size distribution model in pore structure analysis of shale

Lin Bo-tao,Chen Yuan,Chen Mian,Jin Yan,Jiang Zheng   

  1. 1.State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum,Beijing 10229,China;
    2.College of Engineering,Peking University,Beijing 100871,China
  • Received:2017-11-01 Revised:2018-01-19 Online:2018-03-10 Published:2018-03-10

摘要:

孔径分布(Pore  Size  Distribution,PSD)作为孔隙结构的重要表征,对页岩的渗流及储气能力具有重要影响。采用数学表达式来拟合页岩孔径分布,能以数学形式刻画孔隙结构,还能为建立渗流和储量计算模型提供孔隙结构信息。首先介绍了多峰孔径分布拟合模型的理论依据和建模过程,其次选取6个页岩岩样,应用模型分析了采用压汞法和氮气吸附法实验获得的孔径分布结果,拟合了孔径分布函数f(r)并预测了累计孔隙体积v(r)。针对拟合得到的页岩孔径分布规律与实验结果做了对比,提出了该模型预测页岩渗流和储气能力的应用方法。研究发现,氮气吸附比压汞实验的f(r)更接近正态分布,应用模型的拟合度较高。通过分析基于多峰拟合孔径分布函数fM(r)预测的累计孔隙体积v(r),发现脆性矿物含量越高,中孔越发育;TOC含量越高,黏土含量越低,微孔越发育。

关键词: 页岩, 概率论, 多峰拟合模型, 孔径分布函数, 累计孔隙体积

Abstract:

As an important depiction of pore structure,the pore size distribution (PSD) plays a crucial role in affecting the flow and storage capacities of shale gas reservoirs.Mathematical description of the pore size distribution can not only properly depict the pore structure,but also provide quantitative pore structural information for the analytical models in calculating flow and storage.This article first introduced the multi-peak pore size distribution fitting model and the procedure of deriving it,then used the model to analyze the mercury injection capillary pressure (MICP) and N2 adsorption test results of six shale samples.The pore size distribution function f(r) was fitted and the cumulative pore volume v(r)was predicted.Based on the comparison of the fitted f(r)and the predicted v(r)with the experimental results,applications of the model were proposed to the prediction of flow and storage capacity in shale reservoirs.It was found that the test data of the N2 adsorption exhibited a closer configuration to Gaussian distribution than the MICP results,and therefore the associated fitting was better.Through the analysis of the v(r)predicted by the fitted multi-peak PSD function fM(r),it was further discovered that a larger percentage of brittle minerals is correlated with a higher development of mesopores;the higher the TOC or the lower the clay content,the more developed the micropores.

Key words: Shale, Statistics, Multi-peak fitting model, Pore size distribution function, Cumulative pore volume

中图分类号: 

  • TE132.2


[1]Zhang Jinchuan,Jin Zhijun,Yuan  Mingsheng.Reservoiring mechnism of shale gas and its distribution[J].Natural Gas Industry,200,2(7):15-18.
张金川,金之钧,袁明生.页岩气成藏机理和分布[J].天然气工业,200,2(7):15-18.
[2]Bustin R M,Bustin A M M,Cui X,et al.Impact of shale properties on pore structure and storage characteristics[C]∥Society of Petroleum Engineers.Fort Worth:SPE Shale Gas Production Conference,Texas,2008.
[3]Zou Caineng,Dong Dazhong,Wang Shejiao,et al.Geological characteristics,formation mechanism and resource potential of shale gas in China[J].Petroleum Exploration and Development,2010,37(6):61-653.
邹才能,董大忠,王社教,等.中国页岩气形成机理、地质特征及资源潜力[J].石油勘探与开发,2010,37(6):61-653.
[]Xie Xiaoyong,Tang Hongming,Wang Chunhua,et al.Contrast of nitrogen adsorption method and mercury porosimetry method in analysis of shales pore size distribution[J].Natural Gas Industry,2006,26(12):100-102.
谢晓永,唐洪明,王春华,等.氮气吸附法和压汞法在测试页岩孔径分布中的对比[J].天然气工业,2006,26(12):100-102.
[5]Kuila U,Prasad M.Specific surface area and pore-size distribution in clays and shales[J].Geophysical  Prospecting,2013,61(2):31-362.
[6]Yang Feng,Ning Zhengfu,Kong Detao,et al.Pore structure of shale from high pressure mercury injection and nitrogen adsorption method[J].Natural Gas Geoscience,2013,2(3):50-55.
杨峰,宁正福,孔德涛,等.高压压汞法和氮气吸附法分析页岩孔隙结构[J].天然气地球科学,2013,2(3):50-55.
[7]Aksnes D E,Forland K,Kimtys L.Pore size distribution in mesoporous materials as studied by 1H NMR[J].Physical Chemistry Chemical Physics,2001,3(15):3203-3207.
[8]Chalmers G R,Bustin R M,Power I M.Characterization of gas shale pore systems by porosimetry,pycnometry,surface area,and field emission scanning electron microscopy/transmission electron microscopy image analyses:Examples from the Barnett,Woodford,Haynesville,Marcellus,and Doig units[J].AAPG Bulletin,2012,96(6):1099-1119.
[9]Tian Hua,Zhang Shuichang,Liu Shaobo,et al.Determination of organic-rich shale pore features by mercury injection and gas adsorption methods[J].Acta Petrolei Sinica,2012,33(3):19-27.
田华,张水昌,柳少波,等.压汞法和气体吸附法研究富有机质页岩孔隙特征[J].石油学报,2012,33(3):19-27.
[10]Clarkson C R,Freeman M,He L,et al.Characterization of tight gas reservoir pore structure using USANS/SANS and gas adsorption analysis[J].Fuel,2012,95(1):371-385.
[11]Wang Y,Zhu Y,Chen S,et al.Characteristics of the nanoscale pore structure in northwestern Hunan shale gas reservoirs using field emission scanning electron microscopy,high-pressure mercury intrusion,and gas adsorption[J].Energy Fuels,201,28(2):95-955.
[12]Yang N,Tang S,Zhang S,et al.Evaluation shale pore size spectrum using mercury porosimetry and nitrogen adsorption experiment:A case study from the Longtan Formation shale,southeastern Hunan,China[J].Advanced Materials Research,201(962-965):3-0.
[13]Lin B,Chen M,Jin Y,et al.Modeling pore size distribution of southern Sichuan shale gas reservoirs[J].Journal of Natural Gas Science and Engineering,2015,26:883-89.
[1]Liu X,Xiong J,Liang L.Investigation of pore structure and fractal characteristics of organic-rich Yanchang formation shale in central China by nitrogen adsorption/desorption analysis[J].Journal of Natural Gas Science and Engineering,2015,22:62-72.
[15]Guan Quanzhong,Dong Dazhong,Wang Shufang,et al.Analyses on differences of microstructure between marine and lacustrine facies shale reservoirs[J].Natural Gas Geoscience,2016,27(3):52-531.
管全中,董大忠,王淑芳,等.海相和陆相页岩储层微观结构差异性分析[J].天然气地球科学,2016,27(3):52-531.
[16]Zhang Jiankun,He Sheng,Yan Xinlin,et al.Structural characteristics and evolution of nanoporosity in shales[J].Journal of Petroleum:Edition of Natural Science,2017,1(1):11-2.
张建坤,何生,颜新林,等.页岩纳米级孔隙结构特征及热成熟演化[J].中国石油大学学报:自然科学版,2017,1(1):11-2.
[17]Jiang Z,Zhang D,Zhao J,et al.Experimental investigation of the pore structure of Triassic terrestrial shale in the Yanchang Formation,Ordos Basin,China[J].Journal of Natural Gas Science and Engineering,2017(6):36-50.
[18]Fredlund M D,Fredlund D G,Wilson G W.An equation to represent grain-size distribution[J].Canadian Geotechnical Journal,2000,37():817-827.
[19]Li X,Zhang L.Characterization of dual-structure pore size distribution of soil[J].Canadian Geotechnical Journal,2009,6(2):129-11.
[20]Chen Shangbin,Zhu Yanming,Wang Hongyan,et al.Characteristics and significance of mineral compositions of Lower Silurian Longmaxi Formation shale gas reservoir in the southern margin of Sichuan Basin[J].Acta Petrolei Sinica,2011,32(5):775-582.
陈尚斌,朱炎铭,王红岩,等.四川盆地南缘下志留统龙马溪组页岩气储层矿物成分特征及意义[J].石油学报,2011,32(5):775-582.
[21]Rouquerol J,Avnir D,Fairbridge C W,et al.Recommendations for the characterization of porous solids[J].Pure and Applied Chemistry,199,66(8):1739-1758.
[22]Lastoskie C,Gubbins K E,Quirk N.Pore size distribution analysis of microporous carbons:A density functional theory approach[J].Journal of Physical Chemistry,1993,97(18):1012-1016.
[23]Josh M,Esteban L,Delle P C,et al.Laboratory characterization of shale properties[J].Journal of Petroleum Science and Engineering,2012(88/89):107-12.
[2]Li Zhifeng,Li Zhiping,Miao Lili,et al.Gas flow characteristics in nanoscale pores of shale gas[J].Natural Gas Geoscience,2013,2(5):102-107.
李智锋,李志平,苗丽丽,等.页岩气藏纳米孔隙气体渗流特征分析[J].天然气地球科学,2013,2(5):102-107.
[25]Yao Jun,Sun Hai,Huang Zhaoqin,et al.Key mechanical problems in the developmentof shale gas reservoirs[J].Science China:Physics Mechanics Astronomy,2013,3(12):1527-157.
姚军,孙海,黄朝琴,等.页岩气藏开发中的关键力学问题[J].中国科学:物理学 力学 天文学,2013,3(12):1527-157.

[1] 周立宏,蒲秀刚,肖敦清,李洪香,官全胜,林伶,曲宁. 渤海湾盆地沧东凹陷孔二段页岩油形成条件及富集主控因素[J]. 天然气地球科学, 2018, 29(9): 1323-1332.
[2] 赵文韬,荆铁亚,吴斌,周游,熊鑫. 断裂对页岩气保存条件的影响机制——以渝东南地区五峰组—龙马溪组为例[J]. 天然气地球科学, 2018, 29(9): 1333-1344.
[3] 夏鹏,王甘露,曾凡桂,牟雨亮,张昊天,刘杰刚. 黔北地区牛蹄塘组高—过成熟页岩气富氮特征及机理探讨[J]. 天然气地球科学, 2018, 29(9): 1345-1355.
[4] 康毅力,豆联栋,游利军,陈强,程秋洋. 富有机质页岩增产改造氧化液浸泡离子溶出行为[J]. 天然气地球科学, 2018, 29(7): 990-996.
[5] 曾凡辉,王小魏,郭建春,郑继刚,李亚州,向建华. 基于连续拟稳定法的页岩气体积压裂水平井产量计算[J]. 天然气地球科学, 2018, 29(7): 1051-1059.
[6] 朱维耀,马东旭. 页岩储层有效应力特征及其对产能的影响[J]. 天然气地球科学, 2018, 29(6): 845-852.
[7] 余川,曾春林,周洵,聂海宽,余忠樯. 大巴山冲断带下寒武统页岩气构造保存单元划分及分区评价[J]. 天然气地球科学, 2018, 29(6): 853-865.
[8] 王香增,张丽霞,姜呈馥,尹锦涛,高潮,孙建博,尹娜,薛莲花. 鄂尔多斯盆地差异抬升对长7页岩孔隙的影响——以东南部甘泉地区和南部渭北隆起地区为例[J]. 天然气地球科学, 2018, 29(5): 597-605.
[9] 邱 振,邹才能,李熙喆,王红岩,董大忠,卢斌,周尚文,施振生,冯子齐,张梦琪. 论笔石对页岩气源储的贡献——以华南地区五峰组—龙马溪组笔石页岩为例[J]. 天然气地球科学, 2018, 29(5): 606-615.
[10] 汪道兵,葛洪魁,宇波,文东升,周珺,韩东旭,刘露. 页岩弹性模量非均质性对地应力及其损伤的影响[J]. 天然气地球科学, 2018, 29(5): 632-643.
[11] 龙胜祥,冯动军,李凤霞,杜伟. 四川盆地南部深层海相页岩气勘探开发前景[J]. 天然气地球科学, 2018, 29(4): 443-451.
[12] 贺领兄,宋维刚,安生婷,徐永锋,沈娟,路超,王军. 青海东昆仑地区八宝山盆地烃源岩有机地球化学特征与页岩气勘探前景[J]. 天然气地球科学, 2018, 29(4): 538-549.
[13] 邢 舟,曹高社,毕景豪,周新桂,张交东. 南华北盆地禹州地区ZK0606钻孔上古生界煤系烃源岩评价[J]. 天然气地球科学, 2018, 29(4): 518-528.
[14] 曹涛涛,邓模,宋之光,刘光祥,黄俨然,Andrew Stefan Hursthouse. 黄铁矿对页岩油气富集成藏影响研究[J]. 天然气地球科学, 2018, 29(3): 404-414.
[15] 王宏坤,吕修祥,王玉满,慕瑄,张琰,钱文文,陈佩佩. 鄂西下志留统龙马溪组页岩储集特征[J]. 天然气地球科学, 2018, 29(3): 415-423.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!