天然气地球科学

• 非常规天然气 • 上一篇    下一篇

低阶煤储层微观孔隙结构的分形模型评价

王小垚,曾联波,周三栋,史今雄,田鹤   

  1. 1.中国石油大学(北京)地球科学学院,北京 102249;
    2.中国地质大学(北京)能源学院,北京 100083
  • 收稿日期:2017-10-25 修回日期:2017-11-30 出版日期:2018-02-10 发布日期:2018-02-10
  • 作者简介:王小垚(1995-),男,陕西安康人,硕士研究生,主要从事储层裂缝分布及油田开发地质研究.E-mail:skarnwxy@sina.com.

Assessment of micro-pore structure fractal model evaluation of low-rank coal reservoirs

Wang Xiao-yao,Zeng Lian-bo,Zhou San-dong,Shi Jin-xiong,Tian He   

  1. 1.College of Geoscience,China University of Petroleum (Beijing),Beijing 102249,China;
    2.College of Energy,China University of Geosciences (Beijing),Beijing 100083,China
  • Received:2017-10-25 Revised:2017-11-30 Online:2018-02-10 Published:2018-02-10

摘要:

以准噶尔盆地南缘低阶煤储层为研究对象,在压汞实验基础上,应用3种分形理论模型,对低阶煤储层孔隙结构的非均质性进行了定量表征和对比研究。3种理论模型的分形维数D与Dm、Ds之间没有明显的相关性,且与煤岩储层的孔隙连通性之间相关性也较小。但随着经典几何学模型的分形维数Dm增大,热力学模型的分形维数Ds有增加的趋势,且随着Dm与Ds的增加,其煤岩储层微小孔的连通性也明显优于中大孔。不同分形模型的分形维数对低阶煤储层的地质意义不同,多孔介质分形模型的分形维数(D)主要表征低阶煤储层大尺度孔隙对于孔隙体积变化的影响,但没有揭示分形维数与煤储层物性的变化规律;经典几何学分形模型的分形维数(Dm)主要表征低阶煤储层孔隙空间变化的特征,煤储层的孔容随着分形维数(Dm)的增加而减小;热力学分形模型的分形维数(Ds)则主要表征低阶煤储层孔隙表面的粗糙程度,随着分形维数(Ds)增加,孔隙表面张力增大,孔隙表面的粗糙程度也就越大。低阶煤储层的孔隙度与渗透率都较低,连通性相对较好的微小孔增加连通孔隙的体积,根据不同分形模型的分形维数所反映的地质意义,可以按照不同渗透率范围,用不同的分形模型来表征低阶煤储层渗透率的变化规律,为低阶煤的煤层气开采与有效渗透率的预测提供地质依据。
 

关键词: 孔隙结构, 分形模型, 分形维数, 渗透性, 低阶煤储层, 准噶尔盆地南缘

Abstract:

This article takes low-rank coal reservoirs in the southern margin of Junggar Basin as a research object.Based on the mercury intrusion method,a comparative and quantitative study of heterogeneity of pore structure in low-rank coal reservoirs is carried out by using three fractal models.Fractal dimension Dhas no obvious correlation between Dmand Ds,and less correlation between pore connectivity of coal and rock reservoirs.But with the increase of fractal dimension Dm,Ds has a tendency to increase,and with the increase of Dm and Ds,the connectivity of micro-pores in coal reservoirs is also obviously better than that of medium and large pores.The fractal dimensions of different fractal models have different geological significance for low-rank coal reservoirs,the fractal dimension (D) of the fractal porous model mainly indicates the effect of large-scale pore on pore volume change,but it does not reveal the change rule between fractal dimension and physical properties of coal reservoir.The fractal dimension (Dm) of classical geometry model is mainly characterized by pore space variation,and pore volume decreases with the increase of Dm.Fractal dimensions of fractal model of the thermal (Ds) indicates pore surface roughness,surface tension of pore increases along with Ds,and pore surface has the greater roughness.Low porosity and permeability of low-rank coal reservoir,and micro-pores with relatively good connectivity increase the volume of the connected pores.According to the geological significance of the fractal dimension of different fractal models,the variation law of low-rank coal reservoir permeability can be characterized by different fractal models according to different permeability ranges,which provides a geological basis for the extraction of coalbed methane and the prediction of effective permeability for low-rank coal.

Key words: Pore structure, Fractal model, Fractal dimension, Permeability, Low-rank coal reservoir, Southern Jungar Basin

中图分类号: 

  • TE122.2

[1]Liu Dameng,Li Zhengtao,Cai Yidong.Coal reservoir pore-fractured geological influence factors of homogeneity and its research progress[J].Coal Science and Technology,2015,43(2):10-15.
刘大锰,李振涛,蔡益栋.煤储层孔—裂隙均质性及其地质影响因素研究进展[J].煤炭科学技术,2015,43(2):10-15.
[2]Clarkson C R,Bustin R M.The effect of pore structure and gas pressure upon the transport properties of coal:A laboratory and modeling stud(1):Isotherms and pore volume distributions[J].Fuel,1999,78(11):1333-1344.[ZK)]
[3][ZK(3#]Nakagaka T,Komaki I,Sakawa M,et al.Small angle X-ray scattering study on change of fractal property of witbank coal with heat treatment[J].Fuel,2000,79(11):1341-1346.
[4]Okolo G N,Everson R C,Neomagus H W J P,et al.Comparing the porosity and surface areas of coal as measured by gas adsorption,mercury intrusion and SAXS techniques[J].Fuel,2015,141(141):93-304.
[5]Sakurovs R,He L,Melnichenko Y B,et al.Pore size distribution and accessible pore size distribution in bituminous coals[J].International Journal of Coal Geology,2012,100(3):51-64.
[6]Yao Y B,Liu D M,Che Y,et al.Non-destructive characterization of coal samples from China using microfocus X-ray computed tomography[J].International Journal of Coal Geol-ogy,2009,80(2):113-123.
[7]Hu Zhiming,Ba Zhibo,Xiong Wei.Analysis of micro pore structure in low permeability reservoir[J].Journal of Daqing Petroleum Institute,2006,30(3):51-53.
胡志明,把智波,熊伟.低渗透油层微观孔隙结构分析[J].大庆石油学院学报,2006,30(3):51-53.
[8]Yang Zhengming,Zhang Yingzhi,Hao Mingqiang,et al.Comprehensive evaluation method for low permeability reservoir[J].Journal of Petroleum Science,2006,27(2):64-67.
杨正明,张英芝,郝明强,等.低渗透油田储层综合评价方法[J].石油学报,2006,27(2):64-67.
[9]Cai Yidong,Liu Dameng,Yao Yanbin,et al.Temperature control study on dynamic evolution of coal-bed gas reservoir[J].Geography Frontier,2014,21(1):240-248.
蔡益栋,刘大锰,姚艳斌,等.温度控制下的煤层气储层物性动态演化研究[J].地学前缘,2014,21(1):240-248.
[10]Mandelbrot B B,Wheeler J A.The fractal geometry of nature[J].Journal of the Royal Statistical Society,1982,147(4):468.
[11]Hu Baolin,Zhang Zhilong,Che Yao,et al.Study on fractal characteristics of pore of coal reservoirs in Ordos Basin[J].Journal of Huainan Institute,2002,22(4):1-4.
胡宝林,张志龙,车遥,等.鄂尔多斯盆地煤储层孔隙分形特征研究[J].淮南工业学院学报,2002,22(4):1-4.
[12]Tong Hongshu,Hu Baolin.Cryogenic nitrogen adsorption in coal reservoir porosity in the Ordos Basin study on fractal features[J].Coal Technology,2004,23(1):1-3.
童宏树,胡宝林.鄂尔多斯盆地煤储层低温氮吸附孔隙分形特征研究[J].煤炭技术,2004,23(1):1-3.
[13]Yang Yu,Sun Hanseng,Peng Xiaodong,et al.Fractal characteristics of pore structure of coal-bed gas reservoir research[J].Special Oil and Gas Reservoirs,2013,20(1):31-33.
杨宇,孙晗森,彭小东,等.煤层气储层孔隙结构分形特征定量研究[J].特种油气藏,2013,20(1):31-33.
[14]Pfeifer P,Avnir D.Chemistry in nointegral dimensions between two and three[J].Chemical Physics,1983,79(7):3369-3558.
[15]Katz A J,Thompson A H.Fractal sandstone pores:Implications for conductivity and pore formation[J].Physical Review Letters,1985,54(12):1325-1328.
[16]Krohn C E.Sandstone fractal and Euclidean pore volume distributions[J].Journal of Geophysical Research Atmospheres,1988,93(B4):3286-3296.
[17]Krohn C E.Fractal measurements of sandstones,shales,and carbonates[J].Journal of Geophysical Research Solid Earth,1988,93(B4):3297-3305.
[18]Washburn E W.The dynamics of capillary flow[J].Physical Review,1921,17(3):273-283.
[19]He Chengzu,Hu Mingqi.Fractal geometry description of reservoir pore structure[J].Petroleum and Natural Gas Geology,1998,19(1):15-23.
贺承祖,华明琪.储层孔隙结构的分形几何描述[J].石油与天然气地质,1998,19(1):15-23.
[20]Liu Junliang,Tian Changan,Zeng Yanwei,et al.Fractal pore structure and permeability of porous media by fractal dimension[J].Advances in Water Science,2006,17(6):812-817.
刘俊亮,田长安,曾燕伟,等.分形多孔介质孔隙微结构参数与渗透率的分维关系[J].水科学进展,2006,17(6):812-817.
[21]Yao Y B,Liu D M,Tang D Z,et al.Fractal characterization of adsorption-pores of coals from North China:An investigation on CH4 adsorption capacity of coals[J].International Journal of Coal Geology,2008,73(11):27-42.
[22]Yao Y B,Liu D M,Tang D Z,et al.Fractal characterization of seepage-pores of coals from China:An investigation on permeability of coals[J].Computers & Geosciences,2009,35(6):1159-1166.
[23]Cai Y D,Liu D M,Yao Y B,et al.Fractal characteristics of coal pores based on classic geometry and thermodynamics models[J].Acta Geologica Sinica,2011,85(5):1150-1162.
[24]Zhang Songhang,Tang Shunheng,Tang Dazhen,et al.East margin of the Ordos Basin fractal characteristics of pore of coal reservoir seepage[J].Journal of China University of Mining,2009,38(5):713-718.
张松航,唐书恒,汤达祯,等.鄂尔多斯盆地东缘煤储层渗流孔隙分形特征[J].中国矿业大学学报,2009,38(5):713-718.
[25]Fu Xuehai,Qin Yong,Zhang Wanhong,et al.Based on pore fractal classification of coal coalbed methane migration and natural studies[J].Chinese Science Bulletin,2005,50(b10):51-55.
傅雪海,秦勇,张万红,等.基于煤层气运移的煤孔隙分形分类及自然分类研究[J].科学通报,2005,50(b10):51-55.
[26]Zhao Aihong,Liao Yi,Tang Xiuyi.Study on fractal pore structure of coal[J].Journal of Coal Science,1998,23(4):339-442.
赵爱红,廖毅,唐修义.煤的孔隙结构分形定量研究[J].煤炭学报,1998,23(4):339-442.
[27]Wang Rongjie,Chen Yisheng,Li Baowei,et al.Study on the fractal dimension of coal by gas adsorption method[J].Journal of Baotou College of Iron and Steel,1997,16(3):188-192.
王荣杰,陈义胜,李保卫,等.用气体吸附法研究煤的分形维数[J].包头钢铁学院学报,1997,16(3):188-192.
[28]Meyers R A.Coal Structure[M].New York:Academic Press,1982:78-83.
[29]Hao Qi.Micro-morphological characteristics of pore of coal and its genesis[J].Journal of Coal Science,1987(4):53-58,99-103.
郝琦.煤的显微孔隙形态特征及其成因探讨[J].煤炭学报,1987(4):53-58,99-103.
[30]Wang Junmin.Junggar coal-bearing basin tectonic evolution and coal-accumulation[J].Xinjiang Geology,1998,16(1):25-30.
王俊民.准噶尔含煤盆地构造演化与聚煤作用[J].新疆地质,1998,16(1):25-30.
[31]Guo Shaojie,Wu Chaodong,Zhang Zhicheng,et al.Structural control of reservoirs on the south margin of Junggar Basin and large oil-gas exploration direction analysis[J].Journal of University of Geology,2011,17(2):185-195.
郭召杰,吴朝东,张志诚,等.准噶尔盆地南缘构造控藏作用及大型油气藏勘探方向浅析[J].高校地质学报,2011,17(2):185-195.
[32]Li Chenchen,Liu Dameng,Cai Yidong,et al.The microfissure characteristics and mineral control analysis of coal reservoir in the southern margin of the Junggar Basin,Xinjiang[J].Coal Science and Technology,2015,43(12):144-151.
李臣臣,刘大锰,蔡益栋,等.新疆准南地区煤储层显微裂隙特征及矿物控因分析[J].煤炭科学技术,2015,43(12):144-151.
[33]Ma Xinfang,Zhang Shicheng,Lang Zhaoxin.Calculation of fractal dimension of pore structure by using subsection regression method[J].Journal of the University of Petroleum,China:Edition of Natural Science,2004,28(6):54-56.
马新仿,张士诚,郎兆新.用分段回归方法计算孔隙结构的分形维数[J].中国石油大学学报:自然科学版,2004,28(6):54-56.
[34]Lai Jin,Wang Guiwen,Zhang Yiqiong.Low permeability clastic reservoirs calculation method of fractal dimension of pore structure:Reservoir in Xujiahe Formation in central Sichuan region 41 rock sample as an example[J].Journal of Northeast Petroleum University,2013,37(1):1-7.
赖锦,王贵文,郑懿琼,等.低渗透碎屑岩储层孔隙结构分形维数计算方法——以川中地区须家河组储层41块岩样为例[J].东北石油大学学报,2013,37(1):1-7.
[35]Li Dayong,Zang Shibin,Reng Xiaojuan,et al.Fractal research on low permeability reservoir pore structure[J].Liaoning Chemical Industry,2010,39(7):723-726.
李大勇,臧士宾,任晓娟,等.用分形理论研究低渗储层孔隙结构[J].辽宁化工,2010,39(7):723-726.
[36]Yin Zhijun,Sheng Guojun,Wang Chunguang.Mercury-based fractal characteristics of coal and rock porosity[J].Metal Mine,2011,40(9):54-57.
尹志军,盛国君,王春光.基于压汞法的煤岩各段孔隙的分形特征[J].金属矿山,2011,40(9):54-57.
[37]Zhang Xianguo,Zhang Tao,Lin Chengyan.Based on pore fractal feature of pore structure in low permeability reservoir evaluation[J].Lithologic Oil-Gas Reservoirs,2013,25(6):40-45.
张宪国,张涛,林承焰.基于孔隙分形特征的低渗透储层孔隙结构评价[J].岩性油气藏,2013,25(6):40-45.
[38]He Yan,Wu Liansheng.New method of determining the fractal dimension of pore structure[J].Petroleum Experimental Geology,1999,21(4):372-375.
何琰,吴念胜.确定孔隙结构分形维数的新方法[J].石油实验地质,1999,21(4):372-375.
[39]Friesen W I,Mikula R J.Fractal dimensions of coal particles[J].Journal of Colloid & Interface Science,1987,120(1):263-271.
[40]Rootare H M,Prenzlow C F.Surface areas from mercury porosimeter measurements[J].Journal of Physical Chemistry,2002,71(8):2733-2736.
[41]Zhang B,Li S.Determination of the surface fractal dimension for porous media by mercury porosimetry[J].Industrial & Engineering Chemistry Research,1995,34(4):1383-1386.
[42]Zhang B,Liu W,Liu X.Scale-dependent nature of the surface fractal dimension for bi- and multi-disperse porous solids by mercury porosimetry[J].Applied Surface Science,2006,253(3):1349-1355.
[43]Wolf K H A A,Bergen F V,Ephraim R,et al.Determination of the cleat angle distribution of the recopol coal seams,using CT-scans and image analysis on drilling cuttings and coal blocks[J].International Journal of Coal Geology,2008,73(3):259-272.
[44]Kozeny J.Uber kapillare leitung des wassers in boden[J].Sitzungsber Akad Wiss Wein.1927,136(2a):271-306.
[45]Archie G E.Electrical resistivity an aid in core-analysis interpretation[J].AAPG Bulletin,1947,31(2):350-366.
[46]Zhou S,Liu D,Cai Y,et al.Multi-scale fractal characterizations of lignite,subbituminous and high-volatile bituminous coals pores by mercury intrusion porosimetry[J].Journal of Natural Gas Science & Engineering,2017,44:338-350.
[47]Zhang Songhang,Tang Shuheng,Tang Dazhen,et al.East margin of the Ordos Basin fractal characteristics of pore of coal reservoir seepage[J].Journal of China University of Mining and Technology,2009,38(5):714-718.
张松航,唐书恒,汤达祯,等.鄂尔多斯盆地东缘煤储层渗流孔隙分形特征[J].中国矿业大学学报,2009,38(5):714-718.
[48]Liu Shunxi,Wu Caifang.Study on the different scale fractal characteristics of pore of coal reservoirs in Bidesan Tang Basin[J].Coal Science and Technology,2016,44(2):33-38.
刘顺喜,吴财芳.比德—三塘盆地煤储层不同尺度孔隙分形特征研究[J].煤炭科学技术,2016,44(2):33-38.

[1] 张世铭,王建功,张小军,张婷静,曹志强,杨麟科. 酒西盆地间泉子段储层流体赋存及渗流特征[J]. 天然气地球科学, 2018, 29(8): 1111-1119.
[2] 刘喜杰,马遵敬,韩冬,王海燕,马立涛,葛东升. 鄂尔多斯盆地东缘临兴区块致密砂岩优质储层形成的主控因素[J]. 天然气地球科学, 2018, 29(4): 481-490.
[3] 姜黎明,余春昊,齐宝权,朱涵斌,王勇军. 孔洞型碳酸盐岩储层饱和度建模新方法及应用[J]. 天然气地球科学, 2017, 28(8): 1250-1256.
[4] 刘忠宝,冯动军,高波,李洪文,聂海宽. 上扬子地区下寒武统高演化页岩微观孔隙特征[J]. 天然气地球科学, 2017, 28(7): 1096-1107.
[5] 陈术源,秦勇. 河北省北部页岩样品纳米级孔隙结构及其影响因素[J]. 天然气地球科学, 2017, 28(6): 873-881.
[6] 张大智. 利用氮气吸附实验分析致密砂岩储层微观孔隙结构特征——以松辽盆地徐家围子断陷沙河子组为例[J]. 天然气地球科学, 2017, 28(6): 898-908.
[7] 黄玉龙,刘春生,张晶晶,高有峰. 松辽盆地白垩系火山岩气藏有效储层特征及成因[J]. 天然气地球科学, 2017, 28(3): 420-428.
[8] 马明,陈国俊,李超,张功成,晏英凯,赵钊,沈怀磊. 珠江口盆地白云凹陷恩平组储层成岩作用与孔隙演化定量表征[J]. 天然气地球科学, 2017, 28(10): 1515-1526.
[9] 李凤丽,姜波,宋昱,汤政. 低中煤阶构造煤的纳米级孔隙分形特征及瓦斯地质意义[J]. 天然气地球科学, 2017, 28(1): 173-182.
[10] 黄金亮,董大忠,李建忠,胡俊文,王玉满. 陆相页岩储层孔隙分形特征——以四川盆地三叠系须家河组为例[J]. 天然气地球科学, 2016, 27(9): 1611-1618.
[11] 刘晓鹏,刘燕,陈娟萍,胡爱平. 鄂尔多斯盆地盒8段致密砂岩气藏微观孔隙结构及渗流特征[J]. 天然气地球科学, 2016, 27(7): 1225-1234.
[12] 李超正,柳广弟,曹喆,牛子铖,牛小兵,王朋,张梦媛,张凯迪. 鄂尔多斯盆地陇东地区长7段致密砂岩微孔隙特征[J]. 天然气地球科学, 2016, 27(7): 1235-1247.
[13] 吴浩,刘锐娥,纪友亮,张春林,周勇,张云钊. 典型致密砂岩气储层孔隙结构分类及其意义——以鄂尔多斯盆地盒8段为例[J]. 天然气地球科学, 2016, 27(5): 835-843.
[14] 俞雨溪,罗晓容,雷裕红,程明,王香增,张丽霞,姜呈馥,尹锦涛,张立宽. 陆相页岩孔隙结构特征研究——以鄂尔多斯盆地延长组页岩为例[J]. 天然气地球科学, 2016, 27(4): 716-726.
[15] 刘登科,孙卫,任大忠,张茜,明红霞,陈斌. 致密砂岩气藏孔喉结构与可动流体赋存规律——以鄂尔多斯盆地苏里格气田西区盒8段、山1段储层为例[J]. 天然气地球科学, 2016, 27(12): 2136-2146.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!