天然气地球科学

• 天然气地球化学 • 上一篇    下一篇

煤热压实验成熟度的地质标定

陈瑞银,米敬奎,陈建平   

  1. 中国石油勘探开发研究院,北京  100083
  • 收稿日期:2017-08-20 修回日期:2017-09-30 出版日期:2018-01-10 发布日期:2018-01-10
  • 作者简介:陈瑞银(1976-),男,山东泰安人,高级工程师,博士后,主要从事油气地球化学与石油地质研究.E-mail:chenry@petrochina.com.cn.
  • 基金资助:
    中国石油天然气股份有限公司科技管理项目部项目(编号:2014A-02)资助.
     

Maturity of coal-derived hydrocarbon in pyrolysis experiments

Chen Rui-yin,Mi Jing-kui,Chen Jian-ping   

  1. PetroChina Research Institute of Petroleum Exploration & Development,Beijing 100083,China
  • Received:2017-08-20 Revised:2017-09-30 Online:2018-01-10 Published:2018-01-10

摘要:

目前的岩石热解生烃实验技术,已经可以考虑到更多地质过程条件的模拟,但需将热压生排烃实验室的热演化进程用自然地质剖面热演化参数标定后,实验结果才能用于地质生排烃过程认识和油气资源评价中。开展了煤岩在黄金管限定体系恒升温速率(2℃/h、20℃/h)和热压生排烃体系恒温条件下的3组热解实验,鉴于干酪根氢碳原子比对有机质生烃转化进程的指示性,以H/C原子比为转换参数,以自然地质剖面样品的H/C原子比与镜质体反射率(RO)统计关系为基础,建立煤热压实验条件下热演化生烃进程参数与自然地质RO的对应关系模板。结果显示:①相同实验温度,热压生排烃恒温实验对应的自然地质成熟度比黄金管限定体系更高,生烃进程更快;②以自然地质RO为基准,黄金管限定体系恒升温速率实验的固体残渣RO值高出0~0.9%,热压生排烃恒温实验的固体残渣RO值在高—过成熟阶段低0~0.2%;③3组实验的Easy%RO值在450℃以下低0~0.5%,在470℃以上高出0~0.8%。热压生排烃恒温实验的固体残渣RO值更接近自然地质RO值,表明压力和排烃在一定程度上影响了有机质的热成熟演化和成烃进程。对图版预测值误差分析认为,在RO<1.3%段偏差范围为0~0.25%,1.3%<RO<6%段偏差范围为0~0.5%。图版可为各类热压生排烃实验研究提供参考,方法适用于煤系烃源岩地区的生排烃实验评价。

关键词: 煤, 热解实验, 成熟度, 氢碳原子比, 生烃进程, 镜质体反射率

Abstract:

Hydrocarbon generation and expulsion experiment in account of pressure and expulsion effects is an important approach in resource assessment and petroleum formation mechanism.It is necessary to integrate hydrocarbon generation process in pyrolysis experiments with geological maturity.An immature coal is pyrolyzed in three experiment models.The first two are in confined gold reactors at temperatures from 300℃ to 650℃ with heating rates of 2℃/h and 20℃/h and under a pressure of 30MPa.The third is in hydrocarbon generation and expulsion simulation rig at temperatures from 250℃ to 650℃ with rapid heating rates and holding time of 72 hours and under a pressure of 30MPa.The relationship between hydrogen-carbon atomic ratio and vitrinite reflectance is confirmed by the mathematical statistics of 139 geological samples.In view of indicative feature of hydrogen-carbon atomic ratio for organic maturation and hydrocarbon generation,the curves between experimental thermal parameters and geological maturity are graphed for these three series of experiments.Compared with geological maturity RO,the value of solid residue in confined gold reactors is higher by 0-0.9%,and the value at higher maturity stage in hydrocarbon generation and expulsion simulation rig is lower by 0-0.2%.The values of Easy%RO in the three series of experiments are 0-0.8% lower than the values of geological maturity.Obviously,the vitrinite reflectance of solid residue in hydrocarbon generation and expulsion simulation rig is nearer to geological maturity than in confined gold reactor.The conclusion reflects that pressure and hydrocarbon expulsion play an important role in thermal maturity and hydrocarbon generation process of organic matter.Error analysis shows that the corrected maturity of experimental samples with hydrogen-carbon atomic ratio relationship are 0.25% lower in oil window,0.5% lower in gas stage than the real geological maturity.These curves can be applied to resource assessment in coal measures regions by pyrolysis experiments.

Key words: Coal, Pyrolysis experiment, Maturity, Hydrogen carbon atom ratio, Hydrocarbon generation process, Vintrinite reflectance

中图分类号: 

  • TE122.1+13

[1]Dai Jinxing,Ni Yunyan,Huang Shipeng,et al.Significant function of coal-derived gas study for natural gas industry in China[J].Natural Gas Geoscience,2014,25(1):1-22.
戴金星,倪云燕,黄士鹏,等.煤成气研究对中国天然气工业发展的重要意义[J].天然气地球科学,2014,25(1):1-22.
[2]Jones R W,Edison T A.Microscopic observations ofkerogen related to geochemical parameters with emphasis on thermal maturation[M]//Oltz D F,ed.Low Temperature Metamorphism  of  Kerogen  and Clay Minerals,SEPM:Pacific Section,1978:1-12.
[3]Gao Gang,Liu Guangdi,Wang Zhaofeng.Correction of results from hydrocarbon-generating simulation[J].Xinjiang Petroleum Geology,2005,26(2):202-205.
高岗,柳广弟,王兆峰.生烃模拟结果的校正[J].新疆石油学报,2005,26(2):202-205.
[4]Que Yongquan,Zheng Lunju,Cheng Qiuquan,et al.Vintrinite reflectance correction of residues in organic matter pyrolysis simulation experiments[J].Petroleum Geology & Experiment,2015,37(4):206-517.
阙永泉,郑伦举,承秋泉,等.有机质热解模拟实验残留物镜质体反射率校正研究[J].石油实验地质,2015,37(4):506-517.
[5]Zhang Linye,Liu Qing,Zhang Chunrong.Study on the Genetic Relationships between Hydrocarbon Occurrence and Pools Formation in Dongying Depression[M].Beijing:Geological Publishing House,2005:79-80.
张林晔,刘庆,张春荣.东营凹陷成烃与成藏关系研究[M].北京:地质出版社,2005:79-80.
[6]Qiu Nansheng,Li Huili,Xu Ershe,et al.Temperature and time effects on free radical concentration in organic matter:Evidence from laboratory pyrolysis experimental and geological samples[J].Energy Exploration and Exploitation,2012,30(2):311-330.
[7]Chen Jianyu,Hao Fang.Improvement of organic petrology studying types and maturity of organic matter[J].Petroleum Geology & Experiment,1990,12(4):426-431.
陈建渝,郝芳.有机岩石学研究有机质类型和成熟度的改进[J].石油实验地质,1990,12(4):426-431.
[8]Wang Zhaoming,Luo Xiaorong,Chen Ruiyin,et al.Effects and influences of pore pressures on organic matters maturation[J].Advences Earth Science,2006,21(1):39-46.
王兆明,罗晓容,陈瑞银,等.有机质热演化过程中地层压力的作用与影响.地球科学进展,2006,21(1):39-46.
[9]Hao Fang.Kinetics of Hydrocarbon Generation and Mechanisms of Petroleum Accumulation in Overpressured Basins[M].Beijing:Science Press,2005:1-406.
郝芳.超压盆地生烃作用动力学与油气成藏机理[M].北京:科学出版社,2005:1-406.
[10]Hao Fang,Jiang Jianqun,Zou Huayao.The overpressure differently and levelly retard the organic matter evolution[J].Science in China:Series D,2004,34(5):443-451.
郝芳,姜建群,邹华耀.超压对有机质热演化的差异抑制作用及层次[J].中国科学:D辑,2004,34(5):443-451.
[11]Behar F,Leblond C,Saint-Paul C.Quantitative analysis of pyrolysis effluents in an open and closed system[J].Oil Gas Science and Technology,1989,44:387-411.
[12]Behar F,Vandenbroucke M,Teermann S C,et al.Experimental simulation of gas generation from coals and a marine kerogen[J].Chemical Geology,1995,126:247-260.
[13]Landais P,Muller J F,Michels R,et al.Comparative behaviour of coal and maceral concentrates during artificial coalification[J].Fuel,1989,68:1616-1619.
[14]Xiong Y,Geng A,Liu J.Kinetic-simulating experiment combined with GC-IRMS analysis:application to identification and assessment of coal-derived methane from Zhongba Gasfield (Sichuan Basin,China)[J].Chemical Geology,2004,213:325-338.
[15]Shuai Y,Peng P,Zou Y,et al.Kinetic modeling of individual gaseous component formed from coal in a confined system[J].Organic Geochemistry,2006,37:932-943.
[16]Mi Jingkui,Zhang Shuichang,Wang Xiaomei.Comparison of different hydrocarobon generation simulation approaches and key technique[J].Petroleum Geology & Experiment,2009,31(4):409-414.
米敬奎,张水昌,王晓梅.不同类型生烃模拟实验方法对比与关键技术[J].石油实验地质,2009,31(4):409-414.
[17]Zheng Lunju,Qin Jianzhong,He Sheng,et al.Preliminary study of formation porosity thermocompression simulation experiment of hydrocarbon generation and expulsion[J].Petroleum Geology & Experiment,2009,31(3):296-302.
郑伦举,秦建中,何生,等.地层孔隙热压生排烃模拟实验初步研究[J].石油实验地质,2009,31(3):296-302.
[18]Ma Zhongliang,Zheng Lunju,Li Zhiming.The thermocompression simulation experiment of source rock hydrocarbon generation and expulsion in formation porosity[J].Acta Sedimentologica Sinica,2012,30(5):955-963.
马中良,郑伦举,李志明.烃源岩有限空间温压共控生排烃模拟实验研究[J].沉积学报,2012,30(5):955-963.
[19]Chen Ruiyin,Wang Huitong,Chen Jianping,et al.An experimental method to evaluate the hydrocarbon generation and expulsion efficiency in the Songliao Basin[J].Natural Gas Geoscience,2015,26(5):915-921.
陈瑞银,王汇彤,陈建平,等.实验方法评价松辽盆地烃源岩的生排烃效率[J].天然气地球科学,2015,26(5):915-921.
[20]Burnham A K,Sweeney J J.A Chemical kinetic model of vitrinite maturation and reflectance[J].Geochimica et Cosmochimica Acta,1989,53(10):2649-2657.
[21]Sweeney J J,Burnham A K.Evaluation of a simple model of vitrinite reflectance based on chemical kinetics[J].AAPG Bulletin,1990,74(10):1559-1570.
[22]Horsfield B.Practical criteria for classifying kerogens:Some observations from pyrolysis-gas chromatography[J].Geochim Cosmochim Acta,l989,53(4):891-901.
[23]Baskin D K.Atomic H/C ratio ofkerogen as an estimate of thermal maturity and organic matter conversion[J].AAPG Bulletin,1997,8l (9):1437-1450.
[24]Chen Ruiyin,Zhang Shuichang,Chen Jianping,et al.Diagenesis,hydrocarbon generation and expulsion process simulation rig.China:2012,CN202599946U.[P]2012-12-12.
陈瑞银,张水昌,陈建平,等.成岩生烃排烃全过程热压模拟实验装置.中国:2012,CN202599946U.[P]2012-12-12.
[25]Chen Ruiyin,Zhang Shuichang,Chen Jianping,et al.Fluids release quantitative controlling device.China:2012,CN202795075U.[P].2013-03-13.
陈瑞银,张水昌,陈建平,等.流体释放定量控制装置.中国:2012,CN202795075U.[P]2013-03-13.
[26]Xie Qilai,Fan Shanfa,Zhou Zhongyi,et al.Influence of pressure on the evolution and hydrocarbon-generation of source bed by simulationg experiments[J].Bulletin of Mineralogy Petrology and Geochemistry,1996,15(2):91-93.
解启来,范善发,周中毅.压力对烃源层演化及产烃影响的模拟实验[J].矿物岩石地球化学通报,1996,15(2):91-93.
[27]Dalla Torre M,Mahlmann R F,Ernst W G.Experimental study on the pressure dependence of vitrinite mauration[J].Organic Geochemistry,1997,67:2921-2928.
[28]Jiang Feng,Du Jianguo,Wang Wanchun,et al.Influence of temperature and pressure on maturation of organic matter[J].Acta Sedimentologica Sinica,1998,9(3):153-160.
姜峰,杜建国,王万春,等.高温超高压模拟实验研究I.温压条件下对有机质成熟作用的影响[J].沉积学报,1998,9(3):153-160.
[29]Tissot B P,Welte D H.Petroleum Formation and Occurrence[M].New York:Springer-Verlag,1984:1-699.
[30]Qin Jianzhong.Source Rock in China[M].Beijing:Science Press,2005:5-100.
秦建中.中国烃源岩[M].北京:科学出版社,2005:5-100.

[1] 秦胜飞,李金珊,李伟,周国晓,李永新. 川中地区须家河组水溶气形成及脱气成藏有利地质条件分析[J]. 天然气地球科学, 2018, 29(8): 1151-1162.
[2] 程鸣,傅雪海,张苗,程维平,渠丽珍. 沁水盆地古县区块煤系“三气”储层覆压孔渗实验对比研究[J]. 天然气地球科学, 2018, 29(8): 1163-1171.
[3] 吴丛丛,杨兆彪,孙晗森,张争光,李庚,彭辉. 云南恩洪向斜西南区垂向流体能量特征及有序开发建议[J]. 天然气地球科学, 2018, 29(8): 1205-1214.
[4] 邢 舟,曹高社,毕景豪,周新桂,张交东. 南华北盆地禹州地区ZK0606钻孔上古生界煤系烃源岩评价[J]. 天然气地球科学, 2018, 29(4): 518-528.
[5] 巫修平,张群. 碎软低渗煤层顶板水平井分段压裂裂缝扩展规律及控制机制[J]. 天然气地球科学, 2018, 29(2): 268-276.
[6] 王小垚,曾联波,周三栋,史今雄,田鹤. 低阶煤储层微观孔隙结构的分形模型评价[J]. 天然气地球科学, 2018, 29(2): 277-288.
[7] 马达德, 袁莉, 陈琰, 周飞, 吴志雄, 雷涛, 朱军. 柴达木盆地北缘天然气地质条件、资源潜力及勘探方向[J]. 天然气地球科学, 2018, 29(10): 1486-1496.
[8] 单衍胜,毕彩芹,迟焕鹏,王福国,李惠. 六盘水地区杨梅树向斜煤层气地质特征与有利开发层段优选[J]. 天然气地球科学, 2018, 29(1): 122-129.
[9] 赵一民,陈强,常锁亮,田忠斌,桂文华. 基于边界要素二分的煤层气封存单元分类与评估[J]. 天然气地球科学, 2018, 29(1): 130-139.
[10] 张洲,王生维,周敏. 基于构造裂隙填图技术的煤储层裂隙发育特征预测与验证[J]. 天然气地球科学, 2017, 28(9): 1356-1362.
[11] 王玫珠,王勃,孙粉锦,赵洋,丛连铸,杨焦生,于荣泽,罗金洋,周红梅. 沁水盆地煤层气富集高产区定量评价[J]. 天然气地球科学, 2017, 28(7): 1108-1114.
[12] 郭广山,柳迎红,张苗,吕玉民. 沁水盆地柿庄南区块排采水特征及其对煤层气富集的控制作用[J]. 天然气地球科学, 2017, 28(7): 1115-1125.
[13] 马东民,李沛,张辉,李卫波,杨甫. 长焰煤中镜煤与暗煤吸附/解吸特征对比[J]. 天然气地球科学, 2017, 28(6): 852-862.
[14] 陈金明,李贤庆,祁帅,高文杰,孙可欣. 煤结构演化与生气过程关系研究[J]. 天然气地球科学, 2017, 28(6): 863-872.
[15] 纪红,黄光辉,成定树,许姗姗. 塔里木盆地库车坳陷大宛齐—大北地区原油轻烃特征及地球化学意义[J]. 天然气地球科学, 2017, 28(6): 965-974.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚泾利,王程程,陈娟萍,高岗,王飞雁,李晓凤,李佳烨,刘岩. 鄂尔多斯盆地马家沟组盐下碳酸盐岩烃源岩分布特征[J]. 天然气地球科学, 2016, 27(12): 2115 -2126 .
[2] 魏国齐,王志宏,李剑,杨威,谢增业. 四川盆地震旦系、寒武系烃源岩特征、资源潜力与勘探方向[J]. 天然气地球科学, 2017, 28(1): 1 -13 .
[3] 杨振恒,魏志红,何文斌,范明,俞凌杰,徐二社,钱门辉. 川东南地区五峰组—龙马溪组页岩现场解吸气特征及其意义[J]. 天然气地球科学, 2017, 28(1): 156 -163 .
[4] 王志荣,贺平,郭志伟,陈玲霞,徐培远. 水力压裂条件下“三软”煤层压裂渗透模型及应用[J]. 天然气地球科学, 2017, 28(3): 349 -355 .
[5] 杨晓东,张苗,魏巍,李娟,傅雪海. 沁水盆地古县区块煤系“三气”储层孔隙特征对比[J]. 天然气地球科学, 2017, 28(3): 356 -365 .
[6] 郗兆栋,唐书恒,李俊,李雷. 沁水盆地中东部海陆过渡相页岩孔隙结构及分形特征[J]. 天然气地球科学, 2017, 28(3): 366 -376 .
[7] 邹才能, 赵群, 董大忠, 杨智, 邱振, 梁峰, 王南, 黄勇, 端安详, 张琴, 胡志明. 页岩气基本特征、主要挑战与未来前景[J]. 天然气地球科学, 2017, 28(12): 1781 -1796 .
[8] 钱凯,孙晓惠,许小琼,韩荣花,范云,魏星,昌新玲,任珠琳,崔亚亚. 下印度河盆地石油地质、油气分布及油气富集区特征[J]. 天然气地球科学, 2017, 28(12): 1797 -1809 .
[9] 鲁新川,安永福,夏维民,胡子见,张顺存,史基安. 准噶尔盆地阜东斜坡区侏罗系三工河组沉积微相特征及对储层的控制[J]. 天然气地球科学, 2017, 28(12): 1810 -1820 .
[10] 杨志冬. 准噶尔盆地红山嘴油田红153井区二叠系夏子街组砂砾岩储层特征及影响因素[J]. 天然气地球科学, 2017, 28(12): 1829 -1838 .