天然气地球科学

• 天然气地球化学 • 上一篇    下一篇

原油及源内残余沥青裂解成气差异及地质意义

陈双,黄海平 ,张博原,谢增业   

  1. 1.中国地质大学(北京)能源学院,北京 100083;
    2.中国石油勘探开发研究院廊坊分院,河北 廊坊 065007
  • 收稿日期:2017-03-04 修回日期:2017-07-07 出版日期:2017-09-10 发布日期:2017-09-10
  • 通讯作者: 黄海平(1962-)男,江苏无锡人,教授,博士生导师,主要从事非常规油气勘探及地质评价技术研究. E-mail:hhp58@163.com.
  • 作者简介:陈双(1992-),男,四川南充人,硕士研究生,主要从事油气地球化学研究.E-mail:fuchencs@163.com.
  • 基金资助:

    国家科技重大专项(编号:2016ZX05007-003)资助.

Difference in gas generation from thermal cracking of oil within reservoir  and from residual bitumen within source rock and its geological significance

Chen Shuang,Huang Hai-ping,Zhang Bo-yuan,Xie Zeng-ye   

  1. 1.School of Energy Resources,China University of Geoscience,Beijing 100083,China;2.Langfang Branch,PetroChina Research Institute of Exploration and Development,Langfang 065007,China
  • Received:2017-03-04 Revised:2017-07-07 Online:2017-09-10 Published:2017-09-10

摘要:

为了研究不同类型原油和源内残余沥青在高演化阶段的甲烷产率,明确天然气成因类型,系统整理了不同类型原油及源岩的金管模拟实验结果,统计了甲烷产率随模拟温度的变化,发现原油性质对生气过程和生气量都有明显控制,重质油起始生气温度低于轻质油和正常油,在原油裂解成气初期,甲烷产率变化为重质油>正常原油>轻质油,重质油对天然气成藏贡献较大;在原油大量裂解过程中,轻质油的甲烷产率很快超过正常原油和重质油,最终成为天然气成藏的主力。重质油产气早是因为其富含非烃和沥青质,裂解活化能低,产气率低与H/C值(原子比)低有关,轻质油产气晚是因为其富含饱和烃,裂解活化能高,产气率高与H/C值(原子比)高有关。轻质油开始裂解对应成熟度约为Easy% RO=1.5%。干酪根及源内分散沥青生气与原油裂解受相同的因素控制,H/C值高低控制了不同类型干酪根的生气量,在各成熟阶段上甲烷产率始终是Ⅰ>Ⅱ>Ⅲ型有机质。源内分散沥青在化学组成上接近重质油,但比重质油更容易裂解,除活化能低外,还受到黏土矿物催化的影响,其起始裂解成熟度大体为Easy% RO=1.0%。这种差异对热演化程度极高的四川盆地天然气成因类型确定和潜力评价有非常重要的地质意义。
 

关键词: 原油裂解, 分散沥青裂解, 原油密度, 产气率, 四川盆地

Abstract:

In order to study methane generation yields from different types of crude oil within reservoirs and from residual bitumen within source rocks during thermal cracking process and to determine natural gas genetic types,pyrolysis experimental results in closed gold tube system have been systematically evaluated in the present study.Correlation between methane yields and heating temperatures has been established.Physical properties of crude oil exert critical influence on gas generation temperature and potential.Initial temperatures of gas generation from heavy oil and bitumen are lower than these from light oil and normal oil.In the early stage of oil cracking,methane yield from heavy oil is higher than that from normal oil and light oil.In the main oil cracking stage,methane yield from light oil exceeds normal oil and heavy oil rapidly and becomes the major contributor to gas inventory.Such difference is caused by their chemical compositions.Heavy oil is rich in resins and asphaltenes which have low activation energies so that its cracking to gas is easy,while its low methane yield is controlled by low H/C ratio.Light oil is rich in saturated hydrocarbons which have high activation energies so that its cracking to gas is difficult and starts at  Easy% RO=1.5%,whereas its high methane yield is governed by high H/C ratio.The cracking of kerogen and residual bitumen within source rocks share some similarity as crude oils.Methane yield is controlled by H/C ratios with an order of Ⅰ>Ⅱ>Ⅲ in all situations.The chemical compositions of residual bitumen are similar to heavy oil,which is prone to crack at relatively low temperature due to lower activation energy.Meanwhile,clay minerals in source rocks can take a rule as catalyst,which can further facilitate thermal cracking process.Simulation results suggest that thermal cracking of residual bitumen starts at Easy% RO=1.0%.Such difference has significant impact on gas genetic type determination and resource potential evaluation in over matured petroleum systems like Sichuan Basin.
 

Key words: Oil cracking, Dispersed bitumen cracking, Oil density, Gasy yield, Sichuan Basin

中图分类号: 

  • TE122.1+13

[1]Tissot B P,Welte D H.Petroleum Formation and Occurrence[M].Springer Verlag,1984:330-381.
[2]Hill R J,Tang Y,Kaplan I R.Insights into oil cracking based on laboratory experiments[J].Organic Geochemistry,2003,34(12):1651-1672.
[3]Horsfield B,Schenk H J,Mills N,et al.Closed-system programmed-temperature pyrolysis for simulating the conversion of oil to gas in a deep petroleum reservoir[J].Organic Geochemistry,1992,19(1-3)191-204.
[4]Wang Xiaotao,Wang Tongshan,Li Yongxin,et al.Experimental study on the effects of reservoir medium on oil cracking to gas[J].Geochimica,2015,44(2):178-188.[王晓涛,王铜山,李永新,等.储层介质环境对原油裂解生气影响的实验研究[J].地球化学,2015,44(2):178-188.]
[5]He Kun,Zhang Shuichang,Mi Jingkui.Research on the kinetics and controlling factors for oil cracking[J].Natural Gas Geoscience,2011,22(2):211-218.[何坤,张水昌,米敬奎.原油裂解的动力学及控制因素研究[J].天然气地球科学,2011,22(2):211-218.]
[6]He Kun,Zhang Shuichang,Wang Xiaomei,et al.Effect of gas generation from in-situ cracking of residual bitumen in source on hydrocarbon generation from organic matter[J].Acta Petrolei Sinica,2013,34(supplement 1):57-64.[何坤,张水昌,王晓梅,等.源内残留沥青原位裂解生气对有机质生烃的影响[J].石油学报,2013,34(增刊1):57-64.]
[7]Tian Hui,Xiao Xianming,Li Xianqing,et al.comparison of gas generation and carbon isotope fractionation of methane from marine kerogen- and crude oil-cracking gases[J].Geochimica,2007,36(1):71-77.[田辉,肖贤明,李贤庆,等.海相干酪根与原油裂解气甲烷生成及碳同位素分馏的差异研究[J].地球化学,2007,36(1):71-77.]
[8]Liu Wenhui,Wang Jie,Tenger,et al.Stable carbon isotopes of gaseous alkanes as genetic indicators in ferred from laboratory pyrolysis experiments of various marine hydrocarbon source materials from southern China[J].Science China:Earth Science,2012,55:966-974.[刘文汇,王杰,腾格尔,等.南方海相不同类型烃源生烃模拟气态烃碳同位素变化规律及成因判识指标[J].中国科学:地球科学,2012,42(7):973-982.]
[9]Tian H,Xiao X,Wilkins R W T,et al.An experimental comparison of gas generation from three oil fractions:Implications for the chemical and stable carbon isotopic signatures of oil cracking gas[J].Organic Geochemistry,2012,46(191):96-112.
[10]Sun Mengmeng,Mi Jingkui,Feng Zihui,et al.Comparison of the characteristics of hydrocarbons generated by typeⅠof organic matter using two different experiment methods in gold tube system[J].Natural Gas Geoscience,2015,26(6):1156-1164.[孙萌萌,米敬奎,冯子辉,等.黄金管体系中Ⅰ型有机质2种模拟方法生烃特征对比[J].天然气地球科学,2015,26(6):1156-1164.]
[11]Lin Huixi,Wang Shengzhu,Li Yanli,Zhang Kuihua,Jin Qiang.Hydrocarbon generation simulation ofdifferent Carboniferous source rocks in the Junggar Basin[J].Natural Gas Industry,2014,34(10):27-32.[林会喜,王圣柱,李艳丽,等.准噶尔盆地石炭系不同类型烃源岩生烃模拟[J].天然气工业,2014,34(10):27-32.]
[12]Fu Deliang,Zhou Shixin,Li Jing,et al.Kinetics of oil cracking and the meaning of its phase transition characteristics:Taking Well YS1 in northern Qaidam Basin as an example[J].Natural Gas Geoscience,2016,27(8):1500-1508.[付德亮,周世新,李靖,等.原油裂解动力学及其相变特征和意义——以柴达木盆地北缘伊深1井为例[J].天然气地球科学,2016,27(8):1500-1508.]
[13]Wang Zhichao,Mi Jingkui,Li Xianqiang,et al.Current situation and problems of simulation experiment approach of hydrocarbon generation[J].Natural Gas Geoscience,2009,20(4):592-597.[王治朝,米敬奎,李贤庆,等.生烃模拟实验方法现状与存在问题[J].天然气地球科学,2009,20(4):592-597.]
[14]Gai Haifeng,Xiao Xianming,Cheng Peng,et al.Gas generation of shale organic matter with different contents of residual oil based on a pyrolysis experiment[J].Organic Geochemistry,2015,78(57):69-78.
[15]Ma Anlai.Kinetics of oil-cracking of different types of marine oils from Tahe Oilfield,Tarim Basin,NW China[J].Natural Gas Geoscience,2015,26(6):1120-1128.[马安来.塔河油田不同类型海相原油裂解动力学分析[J].天然气地球科学,2015,26(6):1120-1128.]
[16]Li Xianqing,Yang Yunfeng,Feng Songbao,et al.Characteristics of hydrocarbon and gas generation process from pyrolyzed crude oils in Tarim Basin[J].Journal of China University of Mining & Technology,2012,41(3):397-405.[李贤庆,仰云峰,冯松宝,等.塔里木盆地原油裂解生烃特征与生气过程研究[J].中国矿业大学学报,2012,41(3):397-405.]
[17]Tian Hui,Xiao Xianming,Yang Liguo,et al.Pyrolysis of oil at high temperatures:Gas potentials,chemical and carbon isotopic signatures[J].Chinese Science Bulletin,2009,54(7):1217-1224.[田辉,肖贤明,杨立国,等.原油高温裂解生气潜力与气体特征[J].科学通报,2009,54(7):1217-1224.]
[18]Guo Liguo,Xiao Xianming,Tian Hui.Laboratory study of differences between oil-derived and kerogenmaturation gases[J].Petroleum Geology & Experiment,2011,33(4):428-436.[郭利果,肖贤明,田辉.原油裂解气与干酪根裂解气差异实验研究[J].石油实验地质,2011,33(4):428-436.]
[19]Wang Tongshan,Geng Ansong,Li Xia,et al.Gas-generation mechanism of the pyrolysis of asphaltenes in marine crude oil and its geological application[J].Acta Sedimentologica Sinica,2010,28(4):808-814.[王铜山,耿安松,李霞,等.海相原油沥青质作为特殊气源的生气特征及其地质应用[J].沉积学报,2010,28(4):808-814.]
[20]Wang Zixiang,Wang Yongli,Wu Baoxiang,et al.Characteristics of gas generation and the application of hydrocarbon generation kinetics from low-maturity asphalt in Northwestern Sichuan Basin[J].Acta Petrolei Sinica,2016,37(3):339-347.[王自翔,王永莉,吴保祥,等.川西北低成熟沥青产气特征及生烃动力学应用[J].石油学报,2016,37(3):339-347.]
[21]Wang Qingtao,Lu Hong,Gao Lihui,et al.Geochemical characterization of thermogenic gas during the simulation experiments of the mature Salgan shale[J].Journal of China Coal Society,2013,38(5):754-759.[王庆涛,卢鸿,高黎惠,等.高成熟萨尔干页岩热模拟产气的地球化学特征[J].煤炭学报,2013,38(5):754-759.]
[22]Chen Yuan.Mechanisms and Evaluation of Shale Gas Generation from Organic-Rich Marine Shales[D].Chinese Academy of Sciences:Guangzhou Institute of Geochemistry,2015.[陈媛.海相富有机质页岩的生气机理和生气能力评价[D].中国科学院:广州地球化学研究所,2015.]
[23]Dong Zeliang,Li Xianqing,Yang Jie,et al.An experimental study on coal measures source rock gas generation thermal simulation[J].Coal Geology of China,2015,27(6):12-17,34.[董泽亮,李贤庆,杨杰,等.煤系烃源岩生气热模拟实验研究[J].中国煤炭地质,2015 ,27(6):12-17,34.]
[24]Tang Qingyan,Zhang Mingjie,Yu Ming,et al.Pyrolysis constraints on the generation mechanism of shale gas[J].journal of china coal society,2013,38(05):742-747.[汤庆艳,张铭杰,余明,等.页岩气形成机制的生烃热模拟研究[J].煤炭学报,2013,38(05):742-747.]
[25]Sweeney J J,Burnham A K.Evaluation of a simple model of vitrinite reflectance based on chemical kinetics (1)[J].AAPG Bulletin,1990,74(10):1559-1570.
[26]Zhang Shuichang,Hu Guoyi,Mi Jingkui,et al.Time-limit and yield of natural gas generation from different origins and their effects on forecast of deep oil and gas resources[J].Acta Petrolei Sinica,2013,34(supplement 1):41-50.[张水昌,胡国艺,米敬奎,等.三种成因天然气生成时限与生成量及其对深部油气资源预测,影响[J].石油学报,2013,34(增刊1):41-50.]
[27]Zhang Min,Huang Guanghui,Hu Guoyi,et al.Geochemical study of oil-cracking gas and Kerogen-cracking gas(Ⅰ):Analysis of Simulation experiments and products[J].Science China:Series D,2008,(supplement 2):1-8.[张敏,黄光辉,胡国艺,等.原油裂解气和干酪根裂解气的地球化学研究 (Ⅰ)——模拟实验和产物分析[J].中国科学:D辑,2008,(增刊2):1-8.]
[28]Tang Xiaoqiang,Huang Guanghui,Zhang Min,et al.Composition characteristics of products in the process of cracking of crude oil and oil fractions[J].Journal of Chengdu University of Technology:Science & Technology Edition,2011,38(1):21-28.[唐小强,黄光辉,张敏,等.原油及其族组分裂解过程中产物组成变化特征[J].成都理工大学学报:自然科学版,2011,38(1):21-28.]
[29]Zhao Wenzhi,Wang Zhaoyun,Zhang Shuichang,et al.Successive generation of natural gas from organic materials and its significance in future exploration[J].Petroleum Exploration and Development,2005,32(2):1-7.[赵文智,王兆云,张水昌,等.有机质 “接力成气” 模式的提出及其在勘探中的意义[J].石油勘探与开发,2005,32(2):1-7.]
[30]Wei Guoqi,Du Jinhu,Xu Chunchun,et al.Characteristics and accumulation modes of large gas reservoirs in Sinian-Cambrian of Gaoshiti-Moxi region,Sichuan Basin[J].Acta Petrolei Sinica,2015,36(1):1-12.[魏国齐,杜金虎,徐春春,等.四川盆地高石梯—磨溪地区震旦系—寒武系大型气藏特征与聚集模式[J].石油学报,2015 ,36(1):1-12.]
[31]Xu Guosheng,Xu Yanli,Yuan Haifeng,et al.Geochemical characteristics of source rocks and reservoir bitumen of sinian-lower palaeozoic in the middle-southwest of Sichuan Basin[J].Journal of oil and Gas Technology,2007,29(4):45-51.[徐国盛,徐燕丽,袁海锋,等.川中—川东南震旦系—下古生界烃源岩及储层沥青的地球化学特征[J].石油天然气学报,2007,29(4):45-51.]
[32]Luo Bing,Luo Wenjun,Wang Wenzhi,et al.Formation mechanism of the Sinian natural gas reservoir in the Leshan-Longnvsi paleo-uplift,Sichuan Basin[J].Natural Gas Geoscience,2015,26(3):444-455.[罗冰,罗文军,王文之,等.四川盆地乐山—龙女寺古隆起震旦系气藏形成机制[J].天然气地球科学,2015,26(3):444-455.]
[33]Wei Guoqi,Xie Zengye,Song Jiarong,et al.Features and origin of natural gas in the Sinian-Cambrian of central Sichuan paleo-uplift,Sichuan Basin,SW China[J].Petroleum Exploration and Development,2015,42(6):702-711.[魏国齐,谢增业,宋家荣,等.四川盆地川中古隆起震旦系—寒武系天然气特征及成因[J].石油勘探与开发,2015,42(6):702-711.]
[34]Zou Caineng,Du Jinhu,Xu Chunchun,et al.Formation,distribution,resource potential and discovery of the Sinian-Cambrian giant gasfield,Sichuan Basin,SW China[J].Petroleum Exploration and Development,2014,41(3):278-293.[邹才能,杜金虎,徐春春,等.四川盆地震旦系—寒武系特大型气田形成分布,资源潜力及勘探发现[J].石油勘探与开发,2014,41(3):278-293.]
[35]Zhou Q,Xiao X,Pan L,et al.The relationship between micro-Raman spectral parameters and reflectance of solid bitumen[J].International Journal of Coal Geology,2014,121(1):19-25.
[36]Ma Wei,Li Jian,Wang Dongliang,et al.Hydrocarbon expulsion efficiency of source rocks and its influencing factors[J].Natural Gas Geoscience,2016,27(9):1742-1751.[马卫,李剑,王东良,等.烃源岩排烃效率及其影响因素[J].天然气地球科学,2016,27(9):1742-1751.]
[37]Li Jian,Wang Yifeng,Ma Wei,et al.Evaluation on occluded hydrocarbon in deep-ultra deep ancient source rocks and its cracked gas resources[J].Natural Gas Geoscience,2015,35(11):9-15.[李剑,王义凤,马卫,等.深层—超深层古老烃源岩滞留烃及其裂解气资源评价[J].天然气工业,2015,35(11):9-15.]
[38]Hao Bin,Hu Suyun,Huang Shipeng,et al.Geochemical characteristics and its significance of reservoir bitumen of Longwangmiao Formation in Moxi area,Sichuan Basin[J].Geoscience,2016,30(3):614-626.[郝彬,胡素云,黄士鹏,等.四川盆地磨溪地区龙王庙组储层沥青的地球化学特征及其意义[J].现代地质,2016,30(3):614-626.]
[39]Wei Guoqi,Yang Wei,Du Jinhu,et al.Tectonic features of Gaoshiti-Moxi paleo-uplift and its controls on the formation of a giant gasfield,Sichuan Basin,SW China[J].Petroleum Exploration and Development,2015,42(3):257-265.[魏国齐,杨威,杜金虎,等.四川盆地高石梯—磨溪古隆起构造特征及对特大型气田形成的控制作用[J].石油勘探与开发,2015,42(3):257-265.]
[40]Tian Hui,Wang Zhaoming,Xiao Zhongyao,et al.The kinetics simulation of oil cracking and its significance[J].Chinese Science Bulletin,2006,51(15):1821-1827.[田辉,王招明,肖中尧,等.原油裂解成气动力学模拟及其意义[J].科学通报,2006,51(15):1821-1827.]
[41]Li Wei,Hu Guoyi,Zhou Jingao.Asphalt features and gas accumulation mechanism of Sinian reservoirs in the Tongwan Palaeo-uplift,Sichuan Basin[J].Natural Gas Industry,2015,35(6):14-23.[李伟,胡国艺,周进高.四川盆地桐湾期古隆起震旦系储层沥青特征与天然气聚集机制[J].天然气工业,2015,35(6):14-23.]

[1] 邱 振,邹才能,李熙喆,王红岩,董大忠,卢斌,周尚文,施振生,冯子齐,张梦琪. 论笔石对页岩气源储的贡献——以华南地区五峰组—龙马溪组笔石页岩为例[J]. 天然气地球科学, 2018, 29(5): 606-615.
[2] 龙胜祥,冯动军,李凤霞,杜伟. 四川盆地南部深层海相页岩气勘探开发前景[J]. 天然气地球科学, 2018, 29(4): 443-451.
[3] 朱华, 杨光, 苑保国, 应丹琳, 戴鑫, 周红飞, 徐世琦, 谈健康. 四川盆地常规天然气地质条件、资源潜力及勘探方向[J]. 天然气地球科学, 2018, 29(10): 1475-1485.
[4] 沈安江,付小东,张友,郑兴平,刘伟,邵冠铭,曹彦清. 塔里木盆地塔东地区震旦系—下古生界碳酸盐岩油气生储条件与勘探领域[J]. 天然气地球科学, 2018, 29(1): 1-16.
[5] 贾成业,贾爱林,韩品龙,王建君,袁贺,乔辉. 四川盆地志留系龙马溪组优质页岩储层特征与开发评价[J]. 天然气地球科学, 2017, 28(9): 1406-1415.
[6] 张建勇,倪新峰,吴兴宁,李文正,郝毅,陈娅娜,吕学菊,谷明峰,田瀚,朱茂. 中国主要克拉通盆地深层白云岩优质储层发育主控因素及分布[J]. 天然气地球科学, 2017, 28(8): 1165-1175.
[7] 沈安江,陈娅娜,潘立银,王龙,佘敏. 四川盆地下寒武统龙王庙组沉积相与储层分布预测研究[J]. 天然气地球科学, 2017, 28(8): 1176-1190.
[8] 张林,万玉金,杨洪志,苏云河,张满郎. 四川盆地高石梯构造灯影组四段溶蚀孔洞型储层类型及组合模式[J]. 天然气地球科学, 2017, 28(8): 1191-1198.
[9] 翟秀芬,汪泽成,罗平,王铜山,石书缘,张洪. 四川盆地高石梯东部地区震旦系灯影组微生物白云岩储层特征及成因[J]. 天然气地球科学, 2017, 28(8): 1199-1210.
[10] 张光荣,张旋,喻颐,张红英,廖奇,张福宏,赵艾琳,梁瀚. 四川盆地深层海相碳酸盐岩缝洞型储层预测关键技术——以SN地区茅口组为例[J]. 天然气地球科学, 2017, 28(8): 1235-1242.
[11] 何治亮,胡宗全,聂海宽,李双建,许锦. 四川盆地五峰组—龙马溪组页岩气富集特征与“建造—改造”评价思路[J]. 天然气地球科学, 2017, 28(5): 724-733.
[12] 刘岩,杨池银,肖敦清,廖前进,周立宏,于学敏,国建英,蒲秀刚,姜文亚,邹磊落,聂国振,刘庆新,滑双君. 裂陷湖盆深层烃类赋存相态极限的动力学过程分析——以渤海湾盆地歧口凹陷为例[J]. 天然气地球科学, 2017, 28(5): 703-712.
[13] 陈杰,张剑,方杰. 阿联酋二叠系Khuff组气藏成藏模式与成藏过程分析[J]. 天然气地球科学, 2017, 28(4): 521-528.
[14] 朱彤,俞凌杰,王烽. 四川盆地海相、湖相页岩气形成条件对比及开发策略[J]. 天然气地球科学, 2017, 28(4): 633-641.
[15] 康毅力,陈益滨,李相臣,游利军,陈明君. 页岩粒径对甲烷吸附性能影响[J]. 天然气地球科学, 2017, 28(2): 272-279.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!