天然气地球科学

• 天然气开发 • 上一篇    下一篇

纳米粒子增强泡排剂性能及影响因素研究

武俊文1,贾文峰2,雷群1,熊春明1,曹光强1,张建军1,李隽1,廖东3,胡志国4   

  1. 1.中国石油勘探开发研究院,北京 100083;2.中国石化石油工程技术研究院,北京 100101;
    3.中国石油集团川庆钻探工程有限公司地质勘探开发研究院,四川 成都 610051;
    4.西南油气田分公司重庆气矿,重庆 400021
  • 收稿日期:2016-06-03 修回日期:2016-09-10 出版日期:2017-08-10 发布日期:2017-08-10
  • 作者简介:武俊文(1985-),女,山西左云人,工程师,博士,主要从事油田化学剂研究. E-mail:wujunwen@petrochina.com.cn.
  • 基金资助:

    中国石油股份公司科技管理部重大科技专项“深层油气勘探开发关键技术研究”课题“深层油气藏改造、堵水与举升技术”(编号:2014-32-07)资助.

Foam unloading agent stabilized by nanoparticles and the study of its affecting factors

Wu Jun-wen1,Jia Wen-feng2,Lei Qun1,Xiong Chun-ming1,Cao Guang-qiang1,Zhang Jian-jun1,Li Jun1,Liao Dong3,Hu Zhi-guo4   

  1. 1.PetroChina Research Institute of Petroleum Exploration & Development,Beijing 100083,China;
    2.SINOPEC Research Institute of Petroleum Ergineering,Beijing 100101,China;
    3.Geological Exploration and Development Research Institute,Chuanqing Drilling Engineering Co.Ltd.,Chengdu 610051,China;
    4.Chongqing Gasfield,PetroChina Southwest Oil and Gas Field Company,Chongqing 400021,China
  • Received:2016-06-03 Revised:2016-09-10 Online:2017-08-10 Published:2017-08-10

摘要:

针对深层产水气井温度高(110~150℃)、矿化度高的特点,通过在普通液相泡排剂中引入合适尺寸、疏水程度的纳米粒子充当固态稳泡剂,使其吸附在气水界面形成稳定的空间壁垒,阻止气泡的聚并和歧化,从而极大地提高了普通液相泡排剂的起泡性与稳定性。为了给现场施工提供指导,利用高温高压泡沫评价仪实时评价研究了添加纳米粒子的泡排剂随浓度变化的性能,同时还考察了矿化度、温度、压力这3种外界因素对添加纳米粒子的泡排剂性能的影响。添加纳米粒子的泡排剂在矿化度为250 000mg/L下,其初始起泡体积V0和泡沫半衰期t1/2分别高达2 180mL和760s;在150℃高温下其初始起泡体积V0与泡沫半衰期t1/2分别高达1 925mL和700s;这些数据证明纳米粒子对泡排剂性能具有显著增强作用。该添加纳米粒子的泡排剂在重庆气矿现场应用效果良好。

关键词: 排水采气, 纳米粒子, 泡排剂, 气井

Abstract:

In this study the nanoparticles of suitable size and hydrophobic degree were introduced in the liquid as solid foam stabilizer to solve the problem of unloading of deep gas well with high gas temperature (110-150℃) and salinity.The nanoparticles can adsorb onto the gas/water interface to form a solid film which will prevent the coalescence and coarsening of bubbles,therefore the foaming ability and foam stabilizing ability of liquid foam unloading agent were greatly improved.In order to provide guidance for use in gas well,the foaming properties of different concentration of nanoparticles stabilized foam unloading agent was tested in real-time using high temperature and high pressure foam evaluation instrument.Meanwhile,the external factors such as salinity,temperature and pressure on the properties of nanoparticles stabilized foaming agent were also examined.The results show that its initial bubble volume V0 and half-life t1/2 reached as large as 2 160mL and 765s respectively under 250 000mg/L salinity.Besides,its initial bubble volume V0 and half-life t1/2 reached as high as 1 925mL and 700s at 150℃.These data proved that the nanoparticles have strong ability to stabilize the foams.The field application results show that the nanoparticles foam unloading agent performs well.

Key words: Unloading liquid in gas well, Nanoparticles, Foam unloading agent, Gas well

中图分类号: 

  • TE39

[1]Yuan Shiyi,Hu Yongle,Luo Kai.State of the art,challenges and countermeasures of natural gas development in China[J].Petroleum Exploration and Development,2005,32(6):1-6.[袁士义,胡永乐,罗凯.天然气开发技术现状、挑战及对策[J].石油勘探与开发,2005,32(6):1-6.]
[2]Lea J F,Nickens H V.Solving Gas-Well Liquid-Loading Problems[C].SPE 72092,2004.
[3]Solesa M,Borets,Sevic S,et al.Production Optimization Challenges of Gas Wells with Liquid Loading Problem Using Foaming Agents[C].SPE 101276,2006.
[4]Li Lianming,Li Zhiping.Summary of new chemical unloading technology used in gas wells with liquid problem at home and abroad[J].Natural Gas Technology,2008,2(3):37-40.[李莲明,李治平.国内外含水气井化学排水新技术综述[J].天然气技术,2008,2(3):37-40.]
[5]Zhou Fei,Zhang Yongshu,Wang Caixia,et al.Geochemical characteristics and origin of natural gas in Dongping-Niudong areas,Qaidam Basin,China[J].Natural Gas Geoscience,2016,27(7):1312-1323.[周飞,张永庶,王彩霞,等.柴达木盆地东坪—牛东地区天然气地球化学特征及来源探讨[J].天然气地球科学,2016,27(7):1312-1323.]
[6]He Jiaxiong,Xia Bin,Shi Xiaobin,et al.Prospect and prpgress for oil and gas in deep weters of the world and the potential and prospect foreground for oil and gas in deep waters of the South China Sea[J].Natural Gas Geoscience,2006,17(6):747-752.[何家雄,夏斌,施小斌,等.世界深水油气勘探进展与南海深水油气勘探前景[J].天然气地球科学,2006,17(6):747-752.]
[7]Engels T,Rybinski W Y,Schmiedel,P.Structure and dynamics of surfactant-based foams[J].Structure,Dynamics and Properties of Disperse Colloidal Systems Progress in Colloid & Polymer Science,1998,111:117-126.
[8]Chaaudhury M K.Complex fluids:Spread the world about nanofluids[J].Nature,2003,423 (10):131-132.
[9]Pitkethly M J.Nanomaterials-the driving force[J].Matter Today,2004,7(12):20-29.
[10]Kim J H,Kim J S,Choi H,et al.Nanoparticle probes with surface enhanced raman spectroscopic tags for cellular cancer targeting[J].Analytical Chemistry,2006,78(19):6967-6973.
[11]Ivanov I B.Effect of surface mobility on the dynamic behavior of thin liquid films[J].Pure and Applied Chemistry,1980,52(5):1241-1262.
[12]Binks B O,Lumsdon S O.Influence of particle wettability on the type and stability of surfactant-free emulsion[J].Langmuir,2000,16(23):8622-8631.
[13]Gu Chunyuan,Di Qinfeng,Shen Chen,et al.Adsorption of hydrophobic nanoparticles in reservoir microchannels[J].Petroleum Exploration and Development,2011,38(1):84-89.[顾春元,狄勤丰,沈琛,等.疏水纳米颗粒在油层微孔道中的吸附机制[J].石油勘探与开发,2011,38(1):84-89.]

[1] 杨浩珑,向祖平,袁迎中,李龙. 低渗气藏压裂气井稳态产能计算新方法[J]. 天然气地球科学, 2018, 29(1): 151-157.
[2] 乔霞,罗明高, 王洪峰,肖香姣,阳建平. #br# 一种利用生产动态历史评价异常高压气井产能的新方法[J]. 天然气地球科学, 2017, 28(12): 1908-1913.
[3] 顾岱鸿,崔国峰,刘广峰,丁道权. 多层合采气井产量劈分新方法[J]. 天然气地球科学, 2016, 27(7): 1346-1351.
[4] 徐兵祥. 页岩凝析气井生产数据分析新方法[J]. 天然气地球科学, 2016, 27(5): 905-909.
[5] 刘永良,袁迎中,邓力菁,隆正峰,戚志林,徐艳霞,张诗通,刘彬. 一种确定水平气井二项式产能方程的新方法[J]. 天然气地球科学, 2016, 27(2): 371-376.
[6] 陈德春,韩昊,姚亚,付刚,宋天骄,田淑芳. 气井涡流工具作用效果分析与临界携液流量实验研究[J]. 天然气地球科学, 2015, 26(11): 2137-2141.
[7] 邵先杰,董新秀,汤达祯,武泽,李士才,孙玉波,胥昊. 韩城矿区煤层气中低产井治理技术与方法[J]. 天然气地球科学, 2014, 25(3): 435-443.
[8] 赵俊芳,王生维,秦义,赵文秀,陈文文,杨健,李瑞. 煤层气井煤粉特征及成因研究[J]. 天然气地球科学, 2013, 24(6): 1316-1320.
[9] 胡俊坤,李晓平,肖 强,敬 伟. 利用生产动态资料确定气井产能方程新方法[J]. 天然气地球科学, 2013, 24(5): 1027-1031.
[10] 张培河, 刘钰辉, 王正喜, 刘娜娜. 基于生产数据分析的沁水盆地南部煤层气井产能控制地质因素研究[J]. 天然气地球科学, 2011, 22(5): 909-914.
[11] 熊友明, 徐家年, 冯胜利, 张启汉, 刘理明. 气田防砂效果评价方法与标准探索[J]. 天然气地球科学, 2011, 22(2): 331-334.
[12] 宗贻平, 李永, 尉亚民, 汪天游. 涩北气田第四系疏松砂岩气藏有效开发工艺技术研究及应用[J]. 天然气地球科学, 2010, 21(3): 357-361,370.
[13] 于洪敏, 左景栾, 张琪. 气井水合物生成条件预测[J]. 天然气地球科学, 2010, 21(3): 522-527.
[14] 张典坤, 王生维, 李梦溪, 张建国, 杨青雄, 唐江林. 晋城煤层气井产能的地质控制因素分析[J]. 天然气地球科学, 2010, 21(3): 513-517.
[15] 彭朝阳. 气井不同形式产能方程应用探讨[J]. 天然气地球科学, 2010, 21(1): 172-174.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!