天然气地球科学 doi: 10.11764/j.issn.1672-1926.2017.04.006

• 非常规天然气 • 上一篇    下一篇

长焰煤中镜煤与暗煤吸附/解吸特征对比

马东民1,2,3,李沛4,张辉1,李卫波5,杨甫3   

  1. 1.西安科技大学,陕西 西安 710054;
    2.国家能源煤与煤层气共采技术重点实验室,山西 晋城 048006;
    3.国土资源部煤炭资源勘查与综合利用重点实验室,陕西 西安 710021;
    4.中国地质大学(北京),北京 100083;
    5.陕西省地质调查中心,陕西 西安 710065
  • 收稿日期:2017-01-21 修回日期:2017-03-25 出版日期:2017-06-10 发布日期:2017-06-10
  • 作者简介:马东民(1967-),男,陕西合阳人,教授,博士,主要从事煤层气地质与开采技术研究与教学工作. E-mail:mdm6757@126.com.
  • 基金资助:

    山西省煤层气联合研究基金项目“寺河井田3#煤层润湿性对产气量的影响”(编号:2013012009);陕西省科学技术研究发展计划“黄陇煤田转角地区低阶煤储层特征与煤层气勘探开发对策研究”(编号:2016GY-187)联合资助.

Comparison on characteristics of adsorption /desorptionof vitrain and durain in long-flame coal

Ma Dong-min1,2,3,Li Pei4,Zhang Hui1,Li Wei-bo5,Yang Fu3   

  1. 1.Xi'an University of Science and Technology,Xi'an 710054,China;
    2.Key Laboratory of National Energy Coal and Coalbed Methane Joint Mining Technology,Jincheng 048006,China;
    3.Key Laboratory of Coal Resources Exploration and Comprehensive Utilization,Ministry of Land and Resources,Xi'an 710021,China;
    4.China University of Geosciences(Beijing), Beijing 100083,China;
    5.Shaanxi Center of Geological Survey,Xi'an 710065,China
  • Received:2017-01-21 Revised:2017-03-25 Online:2017-06-10 Published:2017-06-10

摘要:

为确定低阶煤不同宏观煤岩组分的煤层气吸附/解吸的能力,选取彬长矿区大佛寺4号煤镜煤和暗煤2种宏观煤岩组分进行吸附/解吸实验,对比二者吸附/解吸特征差异,从吸附热力学角度解释吸附/解吸差异及解吸过程。研究表明:大佛寺镜煤与暗煤组分都以微孔_小孔为主,暗煤的孔隙连通性较好,以开放型孔为主,镜煤则主要以半封闭型的细颈瓶状或墨水瓶状的孔为主;不同煤岩组分吸附/解吸能力的影响因素(从强到弱)依次为:压力、温度、水分、粒度和孔隙特征;降压解吸过程中,水分和粒度在不同宏观煤岩组分中的影响作用不同,暗煤解吸滞后率大于镜煤,压差传递效果对煤的吸附影响不及水分子在煤体内部与甲烷竞争吸附产生的影响,甲烷解吸是降压效果(压差_能量传递作用)和水蒸气置换甲烷(置换效应)共同作用的结果。

关键词: 长焰煤, 镜煤, 暗煤, 煤层气, 吸附/解吸, 热力学特征

Abstract:

In order to identify theadsorption/desorption capability of coalbed methane(CBM) of different macro lithotypes in low rank coal,weselected vitrain and durain samples of Dafosi No.4 coal in Binchang Mining Region to conduct the adsorption/desorption experiments,analyzed the adsorption/desorption characteristicsand studied the differences of adsorption/desorption and the nature of desorption from the perspectives of adsorption thermosdynamic.The results showthatcomponents of vitrain and durain mainly consist of the middle and micropores at Dafosi minefield,and the pore connectivity of durain,with the open hole as the main,is better than vitrain,which is mainly dominated by a semi closed flask shaped or ink bottle shaped pores;The adsorption/desorption capacity of different macro lithotypes was affected(from strong to weak) by pressure,temperature,moisture,granularity and pore characteristics;The effects of moisture and granularity on the different macro lithotypes are different in the process of depressurization and desorption,the desorption hysteresis rate ofdurain was larger than vitrain.The effect of differential pressure transfer on the adsorption of coal is not as good as that of competitive adsorption between water molecules and methane in coal.Desorption of CBM is the result of the joint effect of pressure drop(pressure-energytransferfunction) and vaporization of water vapor replacement of methane(displacement effect).

Key words: Long-flame coal, Vitrain, Durain, Coalbed methane, Adsorption/desorption, Thermodynamic characteristics

中图分类号: 

  • P618.13

[1]Duan Xuqin,Qu Jianwu,Wang Zuna.Pore structure of macerals from a low rank bituminous[J].Journal of China University of Mining & Technology,2009,38(2):224-228.[段旭琴,曲剑午,王祖讷.低变质烟煤有机显微煤岩组分的孔结构分析[J].中国矿业大学学报,2009,38(2):224-228.]
[2]Xie Xiaoyong,Tang Hongming,Wang Chunhua,et al.Contrast of nitrogen adsorption method and mercury porosimetry method in analysis of shales pore size distribution[J].Natural Gas Industry,2006,26(12):100-102.[谢晓永,唐洪明,王春华,等.氮气吸附法和压汞法在测试泥页岩孔径分布中的对比[J].天然气工业,2006,26(12):100-102.]
[3]Yan Jimin,Zhang Qiyuan.Adsorption and Aggregation[M].Beijing:Science Press,1979:108-121.[严继民,张启元.吸附与聚集[M].北京:科学出版社,1979:108-121.]
[4]Busch A,GenstErblum Y,Kross B M.Methane and CO2 sorption and desorption measurements on dry Argonne premium coals:Pure components and mixture[J].International Journal of Coal Geology,2003,55(2-4):205-224.
[5]Harpalani S,Pariti U M.Study of coal sorption isotherms using a multi components gas mixture[C]//Proceedings of the 1993 International Coal Methane Symposium.Birmingham:University of Alabama,1993:151-160.
[6]Greaves K H,Owen L B,Mclenman J D,et al.Multicomponent gas adsorption-desorption behavior of coal[C]//Proceedings of the 1993 International Coalbed Methane Symposium.Birmingham:University of Alabama,1993:197-205.
[7]Ma Dongmin,Zhang Suian,Lin Yabing.Isothermal adsorption and desorption experiment of coal and experimental results accuracy fitting[J].Journal of China Coal Society,2011,36(3):478-480.[马东民,张遂安,蔺亚兵.煤的等温吸附/解吸实验及其精确拟合[J].煤炭学报,2011,36(3):478-480.]
[8]Ma Dongmin,Ma Wei,Lin Yabing.Desorption hysteresis characteristics of CBM[J].Journal of China Coal Society,2012,37(11):1885-1889.[马东民,马薇,蔺亚兵.煤层气解吸滞后特征分析[J].煤炭学报,2012,37(11):1885-1889.]
[9]Fu Xuehai,Qin Yong,Wei Chongtao.Coalbed Methane Geology[M].Xuzhou:China University of Mining & Technology Press,2007:40-43.[傅雪海,秦勇,韦重韬.煤层气地质学[M].徐州:中国矿业大学出版社,2007:40-43.]
[10]Chalmers G R L,Bustin R M.On the effects of petrographic composition on coalbed methane sorption[J].International Journal of Coal Geology,2007,69(4):288-304.
[11]Bustin R M,Clarkson C R.Geological controls on coalbed methane reservoir capacity and gas content[J].International Journal of Coal Geology,1998,38(12):3-26.
[12]Faiz M,Saghafi A,Sherwood N,et al.The influence of petrological properties and burial history on coal seam methane reservoir characterization,Sydney Basin,Australia[J].International Journal of Coal Geology,2007,70(4):193-208.
[13]Fan Yanming.Experimental Study on Methane Micro Calorimetric Adsorption of Maceral Concentrates[D].Xuzhou:China University of  Mining & Technology,2014.[范彦明.煤的显微组分富集物吸附甲烷微量放热特性的实验研究[D].徐州:中国矿业大学硕士学位论文,2014.]
[14]Su Xianbo,Lin Xiaoying.Coalbed Methane Geology[M].Beijing:Coal Industry Press,2009:109.[苏现波,林晓英.煤层气地质学[M].北京:煤炭工业出版社,2009:109.].
[15]Li Zhentao,Yao Yanbin,Zhou Hongpu,et al.Study on coal and rock maceral composition affected to methane adsorption capacity[J].Coal Science and Technology,2012,40(8):125-128.[李振涛,姚艳斌,周鸿璞,等.煤岩显微组成对甲烷吸附能力的影响研究[J].煤炭科学技术,2012,40(8):125-128.]
[16]Li Pei,Ma Dongmin,Zhang Hui,et al.Influence of high and low rank coal wettability and methane adsorption/desorption characteristics[J].
Coal Geology & Exploration,2016,44(5):80-85.[李沛,马东民,张辉,等.高、低阶煤润湿性对甲烷吸附/解吸的影响[J].煤田地质与勘探,2016,44(5):80-85.]
[17]Ramirez Pastor A J,Bulnes F.Differential heat of adsorption in the presence of an order-disorder phase transition[J].Physica A Statistical Mechanics & Its Applications,2000,283(1/2):198-203.
[18]Lu Shouqing,Wang Liang,Qin Liming.Analysis on adsorption capacity and adsorption thermodynamic characteristics of different metamorphic degree coals[J].Coal Science and Technology,2014,42(6):130-135.[卢守青,王亮,秦立明.不同变质程度煤的吸附能力与吸附热力学特征分析[J].煤炭科学技术,2014,42(6):130-135.]
[19]Jiang Wenping,Zhang Qun,Cui Yongjun.Quantum chemistry characteristics of coal adsorbing and their application[J].Natural Gas Geoscience,2014,25(3):444-452.[降文萍,张群,崔永君.煤吸附气体的量子化学特性及其应用[J].天然气地球科学,2014,25(3):444-452.].
[20]Zhou Li,Li Ming,Zhou Yaping.Adsorption measurements and theoretical analysis of supercritical methane at high surface activated carbon[J].Science in China:Series B,2000,30(1) :49-56.[周理,李明,周亚平.超临界甲烷在高表面活性炭上的吸附测量及其理论分析[J].中国科学:B辑,2000,30(1):49-56.]
[21]Zhou Yaping,Zhou Li.Study on the adsorption isotherms of supercritical hydrogen on activated carbon[J].Actaphysico-Chimicasinica,1997,13(12):119-126.[周亚平,周理.超临界氢在活性炭上的吸附等温线研究[J].物理化学学报,1997,13(2):119-126.]
[22]Bai Jianping,Zhang Diankun,Yang Jianqiang,et al.Thermodynamic characteristics of adsorption-desorption of methane in coal seam 3 at Sihe Coal Mine[J].Journal of China coal Society,2014,39(9):1812-1819.[白建平,张典坤,杨建强,等.寺河3号煤甲烷吸附解吸热力学特征[J].煤炭学报,2014,39(9):1812-1819.]

[1] 王刚, 杨曙光, 李瑞明, 伏海蛟. 国内外低煤阶煤层气地质差异性与聚气模式探讨[J]. 天然气地球科学, 2020, 31(8): 1082-1091.
[2] 石迎爽, 梁冰, 薛璐, 孙维吉, 王青春, 程志恒. 煤层气多层合采井生产特征分析[J]. 天然气地球科学, 2020, 31(8): 1161-1167.
[3] 许耀波, 朱玉双. 高阶煤的孔隙结构特征及其对煤层气解吸的影响[J]. 天然气地球科学, 2020, 31(1): 84-92.
[4] 杨师宇,魏韧,袁学浩,郑司建,姚艳斌. 新疆乌鲁木齐河东矿区煤层含气特征及主控因素[J]. 天然气地球科学, 2019, 30(11): 1667-1676.
[5] 彭泽阳,李相方,孙政. 考虑气水分布的煤层气解吸模型[J]. 天然气地球科学, 2019, 30(10): 1415-1421.
[6] 许耀波, 朱玉双, 张培河. 沁水盆地赵庄井田煤层气产出特征及其影响因素[J]. 天然气地球科学, 2019, 30(1): 119-125.
[7] 吴丛丛, 杨兆彪, 孙晗森, 张争光, 李庚, 彭辉. 云南恩洪向斜西南区垂向流体能量特征及有序开发建议[J]. 天然气地球科学, 2018, 29(8): 1205-1214.
[8] 邢 舟,曹高社,毕景豪,周新桂,张交东. 南华北盆地禹州地区ZK0606钻孔上古生界煤系烃源岩评价[J]. 天然气地球科学, 2018, 29(4): 518-528.
[9] 毛港涛, 赖枫鹏, 木卡旦斯·阿克木江, 蒋志宇. 沁水盆地赵庄井田煤层气储层水锁伤害影响因素[J]. 天然气地球科学, 2018, 29(11): 1647-1655.
[10] 杨晓盈, 李永臣, 朱文涛, 黄纪勇, 单永乐, 张强. 贵州煤层气高产主控因素及甜点区综合评价模型[J]. 天然气地球科学, 2018, 29(11): 1664-1671.
[11] 单衍胜,毕彩芹,迟焕鹏,王福国,李惠. 六盘水地区杨梅树向斜煤层气地质特征与有利开发层段优选[J]. 天然气地球科学, 2018, 29(1): 122-129.
[12] 赵一民,陈强,常锁亮,田忠斌,桂文华. 基于边界要素二分的煤层气封存单元分类与评估[J]. 天然气地球科学, 2018, 29(1): 130-139.
[13] 杨文新,李继庆,苟群芳. 四川盆地焦石坝地区页岩吸附特征室内实验[J]. 天然气地球科学, 2017, 28(9): 1350-1355.
[14] 张洲,王生维,周敏. 基于构造裂隙填图技术的煤储层裂隙发育特征预测与验证[J]. 天然气地球科学, 2017, 28(9): 1356-1362.
[15] 王玫珠,王勃,孙粉锦,赵洋,丛连铸,杨焦生,于荣泽,罗金洋,周红梅. 沁水盆地煤层气富集高产区定量评价[J]. 天然气地球科学, 2017, 28(7): 1108-1114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Al-Arouri K;Mckirdy D;Boreham C(澳大利亚);孙庆峰(译). 用油源对比方法识别澳大利亚南塔鲁姆凹陷的石油系统[J]. 天然气地球科学, 2000, 11(4-5): 57 -67 .
[2] 马立祥;. 断层封闭性研究在烃类聚集系统分析中的意义[J]. 天然气地球科学, 2000, 11(3): 1 -8 .
[3] 马立祥. 岩石物理流动单元的概念及其研究现状[J]. 天然气地球科学, 2000, 11(2): 30 -36 .
[4] 李在光;杨占龙;李琳;郭精义;黄云峰;吴青鹏;李红哲;. 胜北地区油气分布规律[J]. 天然气地球科学, 2006, 17(1): 94 -96 .
[5] 王杰,刘文汇,秦建中,张隽. 中国东部幔源气藏存在的现实性与聚集成藏的规律性[J]. 天然气地球科学, 2007, 18(1): 19 -26 .
[6] 李亮,万晓龙,李志伟,张永强,张振红. 油气成藏模拟实验在白于山油藏开发中的应用[J]. 天然气地球科学, 2006, 17(2): 219 -222 .
[7] 李广之;袁子艳;胡斌;邓天龙;. 利用顶空气技术判别凝析气(油)储层[J]. 天然气地球科学, 2006, 17(3): 309 -312 .
[8] 李凤杰;王多云;. 鄂尔多斯盆地西峰油田延长组高分辨率层序地层学研究[J]. 天然气地球科学, 2006, 17(3): 339 -344 .
[9] 赵孟军;宋岩;柳少波;秦胜飞;洪峰;傅国友;达江;. 中国中西部前陆盆地成藏特征的初步分析[J]. 天然气地球科学, 2006, 17(4): 445 -451 .
[10] 姚亚明;周继军;何明喜;付代国;陈建军;. 对焉耆盆地油气地质条件的认识[J]. 天然气地球科学, 2006, 17(4): 463 -467 .