天然气地球科学 doi: 10.11764/j.issn.1672-1926.2017.06.001

• 天然气开发 • 上一篇    下一篇

致密气藏水平井压裂缝不均匀产气试井分析

严谨1,何佑伟2,3,史云清1,郑荣臣1,程时清2,3,于海洋2,3,李鼎一2,3   

  1. 1.中国石化海相油气田开发重点实验室,北京 100083;
    2.中国石油大学(北京)油气资源与工程国家重点实验室,北京 102249;
    3.中国石油大学(北京)石油工程教育部重点实验室,北京102249
  • 收稿日期:2017-04-18 修回日期:2017-05-01 出版日期:2017-06-10 发布日期:2017-06-10
  • 作者简介:严谨(1973-),女,陕西西安人,高级工程师,硕士,主要从事气藏工程研究. E-mail:yanjin.syky@sinopec.com.
  • 基金资助:

    中国石化海相油气田开发重点实验室基金项目“致密气藏压裂井不均匀产气试井解释模型及方法研究”(编号:G5800-15-ZS-WX057)资助.

Well testing analysis of multi-fractured horizontalwell with unequal gas production of fractures in tight gas reservoir

Yan Jin1,He You-wei2,3,Shi Yun-qing1,Zheng Rong-chen1,Cheng Shi-qing2,3,Yu Hai-yang2,3,Li Ding-yi2,3   

  1. 1.SINOPEC Key Laboratory for Marine Oil and Gas Exploration,Beijing 100083,China;
    2.State Key Laboratory of Petroleum Resources and Engineering,China University of Petroleum(Beijing),Beijing 102249,China;
    3.MOE Key Laboratory of Petroleum Engineering,China University of Petroleum(Beijing),Beijing 102249,China
  • Received:2017-04-18 Revised:2017-05-01 Online:2017-06-10 Published:2017-06-10

摘要:

现场测试资料表明,压裂水平井部分裂缝产气量很小,甚至不产气,但现有试井模型几乎都未考虑其对试井解释的影响。因此,采用源函数、纽曼乘积方法建立了水平井压裂裂缝不均匀产气试井模型,通过数值反演得到了考虑井筒存储和表皮效应的井底压力解,绘制了水平井压裂裂缝不均匀产气试井典型图版,并研究了各裂缝产气量、裂缝半长、裂缝数量、裂缝间距和裂缝导流能力对压力动态特征的影响。水平井压裂裂缝均匀产气和不均匀产气在试井典型图版上呈现出不同特征。缝间干扰越小,早期径向流越明显,且在压力导数曲线上表现为约等于0.5/N的水平段。致密储层渗透率小,测压资料难以反映出系统径向流特征,如果把早期径向流当作系统径向流解释会导致解释出的渗透率与真实值存在约N倍的差异,因此在致密气藏试井解释中应该考虑不均匀产气对压力响应特征的影响,准确识别早期径向流阶段。最后给出了压裂裂缝不均匀产气的参数解释方法,为更细致地评价水平井压裂裂缝产气能力提供了借鉴。

关键词: 致密气藏, 压裂水平井, 不均匀产气, 试井分析, 格林函数, 纽曼乘积方法

Abstract:

Field-test data indicate that some fractures have little or no contribution to the total gas production.However,most well-testing models did not consider the effects of unequal gas production of fractures(UGPF) on well testing interpretation.Therefore,this paper establishes a well-testing model with consideration of UGPF based on the source function and Newman‘s product.Then,type curves of multi-fractured horizontal well(MFHW) with UGPF are developed through numerical algorithm to involve the effects of wellbore storage and skin factor.Sensitivity analysis(i.e.UGPF,fracture half-length,number of fractures,fracture spacing) are further discussed.There have big differences among well-testing type curves between equal gas production of fractures(EGPF) and UGPF.The early-radial flow behaves as a horizontal line with the value of nearly 0.5/N in the pseudo-pressure derivative curves when the interferences among fractures are tiny.Permeability of tight gas reservoir is very low so that the field-test data is hard to reflect the characteristics of pseudo-radial flow regime.If the early-radial flow regime is mistaken as the pseudo-radial flow regime,the interpreted permeability will be incorrect.Therefore,the effect of UGPF on well testing interpretation in tight gas reservoir should be investigated.Finally,this paper provides a method to estimate the parameters,which can be regarded as a reference for fracture performance evaluation.

Key words: Tight gas reservoir, Multi-fractured horizontal well, Unequal gas production of fractures, Well testing analysis, Green‘s function, Newman’s product principle

中图分类号: 

  • TE132.2

[1]Kang Yili,Luo Pingya.Current status and prospect of key techniques for exploration and production of tight sandstone gas reservoirs in China[J].Petroleum Exploration and Development,2007,34(2):239-245.[康毅力,罗平亚.中国致密砂岩气藏勘探开发关键工程技术现状与展望[J].石油勘探与开发,2007,34(2):239-245.]
[2]Dai Jinxing,Ni Yunyan,Wu Xiaoqi.Tight gas in China and its significance in exploration and exploitation[J].Petroleum Exploration and Development,2012,39(3):257-264.[戴金星,倪云燕,吴小奇.中国致密砂岩气及在勘探开发上的重要意义[J].石油勘探与开发,2012,39(3):257-264.]
[3]Jiang Ruizhong,Teng Wenchao,Qiao Xin,et al.Pressure transient analysis of fractured horizontal well in composite shale gas reservoir[J].Natural Gas Geoscience,2015,26(12):2336-2342.[姜瑞忠,滕文超,乔欣,等.复合页岩气藏压裂水平井压力动态分析[J].天然气地球科学,2015,26(12):2336-2342.]
[4]Ozkan E,Brown M L,Raghavan R,et al.Comparison of fractured-horizontal-well performance in tight sand and shale reservoirs[J].SPE Reservoir Evaluation & Engineering,2009,14(2):248-259.
[5]He Youwei,Cheng Shiqing,Qin Jiazheng,et al.A semianalytical approach to estimate the locations of malfunctioning horizontal wellbore through bottom-hole pressure and its application in Hudson Oilfield[C].SPE 183796,2017.
[6]He Youwei,Cheng Shiqing,Li Lei,et al.Waterflood direction and front characterization with four-step work flow:A case study in Changqing Oil field,China[J].SPE Reservoir Evaluation & Engineering,2016,in press.
[7]Wei Yi,Ran Qiquan,Tong Min,et al.A full cycle productivity prediction model of fractured horizontal well in tight oil reservoirs[J].Journal of Southwest Petroleum University:Science & Technology Edition,2016,38(1):99-106.[魏漪,冉启全,童敏,等.致密油压裂水平井全周期产能预测模型[J].西南石油大学学报:自然科学版,2016,38(1):99-106.]
[8]Giger F M.Low-permeability reservoirs development using horizontal wells[C].SPE 16406,1987.
[9]Larsen L,Hegre T M.Pressure-transient behavior of horizontal wells with finite-conductivity verticalfractures[C].SPE 22076,1991.
[10]Larsen L,Hegre T M.Pressure transient analysis of multi-fractured horizontal wells[C].SPE28389,1994.
[11]Horne R N,Temeng K O.Relative productivities and pressure transient modeling of horizontal wells withmultiple fractures[C].SPE29891,1995.
[12]Ozkan E,Raghavan R.New solutions for well-test-analysis problems:part 1-analytical considerations(includes associatedpapers 28666 and 29213)[J].SPE Formation Evaluation,1991,6(3):359-368.
[13]Guo G,Evans R D.Pressure-transient behavior and inflow performance of horizontal wells intersectingdiscrete fractures[C].SPE26446,1993.
[14]Guo G,Evans R D.Pressure-transient behavior for a horizontal well intersecting multiple random discretefractures[C].SPE28390,1994.
[15]Raghavan R S,Chen C C,Bijan A.An analysis of horizontal wells intercepted by multiple fractures[J].SPE Journal,1997,2(3):235-245.
[16]Al Rbeawi S J H,Djebbar T.Transient pressure analysis of a horizontal well with multiple inclined hydraulic fractures using type-curve matching[C].SPE149902,2012.
[17]Li Xiaoping.Fluid flow through pay zones in relation to draw-down profiles in a horizontal well intersecting several vertical fractures[J].Acta Petrolei Sinica,1996,17(2):91-97.[李笑萍.穿过多条垂直裂缝的水平井渗流问题及压降曲线[J].石油学报,1996,17(2):91-97.]
[18]Liu Zhenyu,Fang Liang,An Yanming,et al.Pressure behavior of horizontal well with multiple transversal fractures[J].XinJiang Petroleum Geology,2003,24(4):341-343.[刘振宇,方亮,安艳明,等.穿越多条裂缝水平井的井底压力变化特征[J].新疆石油地质,2003,24(4):341-343.]
[19]Li Shusong,DuanYonggang,Chen Wei,et al.Well testing analysis of fractured horizontal well[J].Petroleum Geology & Oilfield Development in Daqing,2006,25(3):67-69.[李树松,段永刚,陈伟,等.压裂水平井多裂缝系统的试井分析[J].大庆石油地质与开发,2006,25(3):67-69.]
[20]Wang Bencheng,Jia Yonglu,Li  Youquan,et al.A new solution of well test model for multistage fractured horizontal wells[J].Acta Petrolei Sinica,2013,34(6):1150-1156.[王本成,贾永禄,李友全,等.多段压裂水平井试井模型求解新方法[J].石油学报,2013,34(6):1150-1156.]
[21]Fan Dongyan,Yao Jun,Sun Hai,et al.Transient flow model of stage-fractured horizontal wells in shale gas reservoirs[J].Journal of China University of Petroleum:Edition of Natural Science,2014,38(5):116-123.[樊冬艳,姚军,孙海,等.页岩气藏分段压裂水平井不稳定渗流模型[J].中国石油大学学报:自然科学版,2014,38(5):116-123.]
[22]Al-Shamma B,Nicole H,Nurafza P R.et al.Evaluation of multi-fractured horizontal well performance:babbage field casestudy[C].SPE168623,2014.
[23]He Youwei,Cheng Shiqing,Hu Limin,et al.
A pressure tran sient analysis model of multi-fractured horizontal well in consideration of unequal production of each fracture
[J].Journal of China University of Petroleum:Edition of Natural Science,2017,41(4):116-123.[何佑伟,程时清,胡利民,等.多段压裂水平井不均匀产油试井模型[J].中国石油大学学报:自然科学版,2017:41(4):116-123.]
[24]He Youwei,Cheng Shiqing,Li Shuang,et al.A semianalyticalmethodology to diagnose the locations of underperforming hydraulic fractures through pressure-transient analysis in tight gas reservoir[J].SPE Journal,2017,22(3):924-939.
[25]Gringarten A C,Ramey H J.The use of source and Greens Functions in solving unsteady-flow problems in reservoirs [J].SPE Journal,1973,13(5):285-296.
[26]Kong Xiangyan.Advanced Percolation Mechanics[M].2nd Edition.Hefei:University of Science and Technology of China press,2010:206-234.[孔祥言.高等渗流力学[M].第二版.合肥:中国科学技术大学出版社,2010:206-234.]
[27]Al-Hussainy R,Ramey H J.Application of real gas flow theory to well testing and deliverability Forecasting[J].Journal of Petroleum Technology,1966,18(5):637-642.
[28]VanEverdingen A F.The skin effect and its influence on the productive capacity of a well[J].Journal of Petroleum Technology,1953,5(6):171-176.
[29]Van Everdingen A F,Hurst W.The application of the Laplace transformation to flow problems in reservoirs[J].Journal of Petroleum Technology,1949,1(12):305-324.
[30]Stehfest H.Algorithm 368:Numerical inversion of Laplace transforms[J].Communications of the ACM,1970,13(1):47-49.

[1] 马嘉令, 盛广龙, 刘红林, 李琳璐, 赵辉, 周玉辉. 非常规气藏压裂水平井缝网—井网自动优化方法[J]. 天然气地球科学, 2020, 31(8): 1168-1177.
[2] 杜果,杨丹,周兴燕,郑玮鸽,林加恩. 考虑垂向裂缝发育的火山岩气藏部分打开井试井分析方法[J]. 天然气地球科学, 2020, 31(10): 1367-1374.
[3] 位云生, 贾爱林, 郭智, 孟德伟, 王国亭. 致密砂岩气藏多段压裂水平井优化部署[J]. 天然气地球科学, 2019, 30(6): 919-924.
[4] 罗红文, 李海涛, 刘会斌, 孙涛, 卢宇, 李颖. 低渗气藏两相渗流压裂水平井温度剖面预测[J]. 天然气地球科学, 2019, 30(3): 389-399.
[5] 谢维扬, 刘旭宁, 吴建发, , 张鉴, 吴天鹏, 陈满. 页岩气水平井组产量递减特征及动态监测[J]. 天然气地球科学, 2019, 30(2): 257-265.
[6] 张芨强,雷霄,张乔良,薛国庆,汤明光. 低渗透气藏产水压裂水平井产能评价[J]. 天然气地球科学, 2019, 30(12): 1701-1708.
[7] 罗红文,李海涛,蒋贝贝,李颖,卢宇. 基于DTS数据反演的低渗气藏压裂水平井产出剖面解释新方法[J]. 天然气地球科学, 2019, 30(11): 1639-1645.
[8] 姜瑞忠, 原建伟, 崔永正, 张伟, 张福蕾, 张海涛, 毛埝宇. 基于TPHM的页岩气藏多级压裂水平井产能分析[J]. 天然气地球科学, 2019, 30(1): 95-101.
[9] 朱宽亮, 吴晓红, 康毅力, 游利军, 田键, 宋静晗. 致密火山岩气藏水相和油相圈闭损害实验评价——以南堡凹陷5号构造沙河街组为例[J]. 天然气地球科学, 2018, 29(7): 1042-1050.
[10] 曾凡辉, 王小魏, 郭建春, 郑继刚, 李亚州, 向建华. 基于连续拟稳定法的页岩气体积压裂水平井产量计算[J]. 天然气地球科学, 2018, 29(7): 1051-1059.
[11] 吴明涛, 王晓冬, 姚天福. 致密气藏气井非稳态线性渗流特征分析新方法[J]. 天然气地球科学, 2018, 29(7): 1060-1066.
[12] 吕志凯, 贾爱林, 唐海发, 刘群明, 王泽龙. 大型致密砂岩气藏水平井产能评价与新认识[J]. 天然气地球科学, 2018, 29(6): 873-879.
[13] 卢文涛,李继庆,郑爱维,梁榜,张谦,杨文新. 涪陵页岩气田定产生产分段压裂水平井井底流压预测方法[J]. 天然气地球科学, 2018, 29(3): 437-442.
[14] 王琰琛, 陈军, 邓亚, 肖聪. 页岩气藏体积压裂水平井渗流模型[J]. 天然气地球科学, 2018, 29(12): 1795-1802.
[15] 王妍妍,王卫红,胡小虎,刘华,郭艳东. 诱导渗透率场中压裂水平井压力动态分析模型[J]. 天然气地球科学, 2017, 28(5): 785-791.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 郑建京;吉利明;孟仟祥;. 准噶尔盆地天然气地球化学特征及聚气条件的讨论[J]. 天然气地球科学, 2000, 11(4-5): 17 -21 .
[2] Seewald J S;Benitez-Netson B C;Whelan J K(美国);刘全有(译). 天然气形成与组成的实验和理论因素[J]. 天然气地球科学, 2000, 11(4-5): 30 -44 .
[3] 陈建阳,张志杰,于兴河 . AVO技术在水合物研究中的应用及应注意的问题[J]. 天然气地球科学, 2005, 16(1): 123 -126 .
[4] 李美俊;卢鸿;王铁冠;吴炜强;刘菊;高黎惠;. 北部湾盆地福山凹陷岩浆活动与CO2 成藏的关系[J]. 天然气地球科学, 2006, 17(1): 55 -59 .
[5] 施立志;林铁锋;王震亮;王卓卓;姚勇;. 库车坳陷下白垩统天然气运聚系统与油气运移研究[J]. 天然气地球科学, 2006, 17(1): 78 -83 .
[6] 王茹;. 胜坨油田两期成藏地球化学特征及成藏过程分析[J]. 天然气地球科学, 2006, 17(1): 133 -136 .
[7] 程同锦,朱怀平,陈浙春. 孔雀1井剖面地球化学特征与烃类的垂向运移[J]. 天然气地球科学, 2006, 17(2): 148 -152 .
[8] 唐友军,文志刚,窦立荣,徐佑德. 一种估算原油成熟度的新方法[J]. 天然气地球科学, 2006, 17(2): 160 -162 .
[9] 朱志敏;沈冰;闫剑飞;. 阜新盆地无机成因气探讨[J]. 天然气地球科学, 2006, 17(3): 418 -421 .
[10] 倪金龙;吕宝凤;夏斌;. 渤海湾盆地八面河缓坡带断裂系统及其对孔店组油气成藏的影响[J]. 天然气地球科学, 2006, 17(3): 370 -373 .