天然气地球科学

• 非常规天然气 • 上一篇    下一篇

页岩粒径对甲烷吸附性能影响

康毅力,陈益滨,李相臣,游利军,陈明君   

  1. 油气藏地质及开发工程国家重点实验室,西南石油大学,四川 成都 610500
  • 收稿日期:2016-09-18 修回日期:2016-12-31 出版日期:2017-02-10 发布日期:2017-02-10
  • 作者简介:康毅力(1964-),男,天津蓟县人,教授,博士,博士生导师,主要从事储层保护理论及技术、非常规天然气、油气田开发地质的研究与教学工作. E-mail:cwctkyl@vip.sina.com.
  • 基金资助:

    国家科技重大专项“彭水地区常压页岩气勘探开发示范工程”(编号:2016ZX05061);四川省教育厅重点项目(编号:16ZA0077);
    国家自然科学基金(编号:51674209)联合资助.

Effect of particle size on methane sorption capacity of shales

Kang Yi-li,Chen Yi-bin,Li Xiang-chen,You Li-jun,Chen Ming-jun   

  1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Southwest Petroleum University,Chengdu 610500,China
  • Received:2016-09-18 Revised:2016-12-31 Online:2017-02-10 Published:2017-02-10

摘要:

为了研究粒径对页岩吸附甲烷的作用机理,分别制成粒径范围为1 700~3 350μm、850~1 000μm、180~250μm和106~131μm的4种样品,开展了高温高压等温吸附实验,根据Langmuir吸附理论并拟合实验结果获得了不同粒径下的吸附参数,分析基于粒径作用下的孔隙连通性、比表面积和粗糙度对吸附能力的影响,并探讨页岩吸附的粒径敏感性。结果表明:随页岩粒径减小,甲烷吸附量增加,Langmuir体积呈现出先急剧增大后减小再增大的趋势;粒径从1 700~3 350μm减小至180~250μm,中孔体积增加了72.46倍,直径小于5nm孔隙的孔容贡献率从57.94%增至80.36%,比表面积贡献率从74.34%增至92.85%。结论认为:①粒径随颗粒碾碎减小,改善了孔隙连通性,减少了吸附阻碍,优化了甲烷分子的传质吸附路径,提高了吸附速率;②粒径越小,被包裹的闭孔暴露出来,2~5nm的中孔数量增加,孔隙体积和比表面积得到了较大的提高,为甲烷分子提供了更大的吸附空间;③粒径减小增强了孔隙表面的粗糙程度,贡献了比表面积的同时也使得颗粒中的有机质和黏土矿物一定程度地暴露出来,增加了更多的高能吸附位。

关键词: 页岩, 四川盆地, 粒径, 吸附性能, 比表面积, 粗糙度, 吸附位

Abstract:

In order to research the effect of particle size on adsorption properties of shale,shale samples rich in gases are collected from the Silurian Longmaxi in the Sichuan Basin and four types of coal specimens are made.The grain diameters of these specimens are within the ranges of 1 700-3 350μm,850-1000μm,180-250μm and 106-131μm,respectively.The isothermal adsorption experiments were conducted under the condition of high pressure and high temperature,which are aimed at carrying out further study on the effect of the pore connectivity,specific surface area and roughness on the methane adsorption and the effect of the sensitivity of particle size.Results showed that methane adsorption capacity were negatively related to the particle size,the value of Langmuir volume decreased after showing sharp increase and then increased with the particle size going down.Specific surface area increased from 6.09m2/g to 8.81m2/g,while the particle size from 1 700-3 350μm down to 180-250μm.Furthermore,both value of pore volume and the rate of contribution on specific surface area whose diameter is less than 5nm increased from 57.94% to 80.36% and from 74.34% to 92.85%,respectively.It could be safely drawn out the conclusion that,(1)The pore connectivity got to be better with the decrease of particle size,which is actually conducive to improve the adsorption ability motivated by removing obstacles and optimizing path for the mass-transfer efficiency and methane adsorption of shale.(2)The smaller the particle size,the higher the quantity of the close pore which is exposed by crushing and the mesopore whose diameter is between 2nm and 5nm,pore volume and specific surface area has been greatly improved,the methane molecules have greater adsorption space to produce more of the adsorption quantity.(3)Considering the fact that the extent of pore roughness performed negative relationship to particle size,more considerable pore,organic and clay minerals are exposed while the particle size decreases,which makes the specific surface area increase in large region,as a consequence,supplying more high energy absorption sites on the pore surface are actually helpful to improve the adsorption ability.

Key words: Shale, Sichuan Basin, Particle size, Sorption capacity, Specific surface area, Pore roughness, Absorption sites

中图分类号: 

  • TE122.2

[1]Curtis J B.Fractured shale-gas systems[J].AAPG Bulletin,2002,86(11):1921-1938.
[2]Mengal S,Wattenbarger R.Accounting for adsorbed gas in shale gas reservoirs[R].SPE 141085,2011.
[3]Chen Xinjun,Bao Shujing,Hou Dujie,et al.Methods and key parameters of shale gas resources evaluation[J].Petroleum Exploration and Development,2012,39(5):566-571.[陈新军,包书景,侯读杰,等.页岩气资源评价方法与关键参数探讨[J].石油勘探与开发,2012,39(5):566-571.]
[4][KG*6/7]Jia Chengzao,Zheng Min,Zhang Yongfeng.Unconventional hydrocarbon resources in China and the prospect of exploration and development[J].Petroleum Exploration and Development,2012,39(2):129-136.[贾承造,郑民,张永峰.中国非常规油气资源与勘探开发前景[J].石油勘探与开发,2012,39(2):129-136.]
[5]Chalmers G R L,Bustin R M.Lower Cretaceous gas shales in northeastern British Columbia;part I,Geological controls on methane sorption capacity[J].Bulletin of Canadian Petroleum Geology,2008,56/1:1-21.
[6][KG*6/7]Zhang Han,Zhu Yanming,Xia Xiaohong,et al.Comparison and explanation of the absorptivity of organic matters and clay minerals in shales[J].Journal of  Chian Coal Science,2013,38(5):812-816.[张寒,朱炎铭,夏筱红,等.页岩中有机质与黏土矿物对甲烷吸附能力的探讨[J].煤炭学报,2013,38(5):812-816.]
[7]Li Wuguang,Yang Shenglai,Chen Feng,et al.The sensitivity of shale gas adsorpotion and desorpotion with rising reservoir temperature[J].Mineral Petrol,2012,32(2):115-120.[李武广,杨胜来,陈峰,董谦,娄毅,王海洋.温度对页岩吸附解吸的敏感性研究[J].矿物岩石,2012,32(2):115-120.]
[8]Ross D J K,BustinR M.Sediment geochemistry of the lower Jurassic Gordondale member,northeastern British Columbia[J].Bulletin of Canadian Petroleum Geology,2006,54(4): 337-365.
[9]Guo S.Experimental study on isothermal adsorption of methane gas on three shale samples from Upper Paleozoic strata of the Ordos Basin[J].Journal of Petroleum Science and Engineering,2013,110:132-138.
[10]Chalmers G R L,Bustin R M.The organic matter distribution and methane capacity of the Lower Cretaceous strata of Northeastern British Columbia,Canada[J].International Journal of Coal Geology,2007,70(1-3):223-239.
[11]Ji Iiming,Qiu Junli,Zhang Tongwei,et al.Experiments on methane adsorption of common clay minerals in shale[J].Earth Science:Journal of China University of Geosciences,2012,37(5):1043-1050.[吉利明,邱军利,张同伟,等.泥页岩主要黏土矿物组分甲烷吸附实验[J].地球科学:中国地质大学学报,2012,37(5):1043-1050.]
[12]Li Dawei,Wang Deming,Gu Junjie,et al.Experiment research on coal physical temperature and particle oxygen sorption law with size variation[J].Coal Science and Technology,2008,36(2):42-44.[李大伟,王德明,顾俊杰,等.煤物理吸氧量随温度及粒径变化规律的试验研究[J].煤炭科学技术,2008,36(2):42-44.]
[13]Zhang Tianjun,Xu Hongjie,Li Shugang,et al.The effect of particle size on adsorption of methane on coal[J].Journal of Hunan University of Science & Technology:Natural Science Edition,2009,24(1):9-12.[张天军,许鸿杰,李树刚,等.粒径大小对煤吸附甲烷的影响[J].湖南科技大学学报:自然科学版,2009,24(1):9-12.]
[14]Langmuir I.The adsorption of gases on plane surfaces of glass,mica and platinum[J].Journal of the American Chemical Society,1918,40(9): 1361-1403.
[15]Sing K S W.Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Provisional)[J].Pure and Applied Chemistry,1998,54(11):2201-2218.
[16]Xiong J,Liu X,Liang L.Experimental study on the pore structure characteristics of the Upper Ordovician Wufeng Formation shale in the southwest portion of the Sichuan Basin,China[J].Journal of Natural Gas Science & Engineering,2015,22:530-539.
[17]Jin Teng Jingyi.Adsorption Science[M].Beijing:Chemical Industry Press,2006.[近藤精一.吸附科学[M].北京:化学工业出版社,2006.]
[18]Yu Bingsong.Classification and characterization of gas shale pore system[J].Earth Science Frontiers,2013,20 (4):211-220.[于炳松.页岩气储层孔隙分类与表征[J].地学前缘,2013,20(4):211-221.]
[19]Yang Feng,Ning Zhengfu,Kong Detao,et al.Pore structure of shales from high pres-sure mercury injection and nitrogen adsorption method[J].Natural Gas Geoscience,2013,24(3):450-455.[杨峰,宁正福,孔德涛,等.高压压汞法和氮气吸附法分析页岩孔隙结构[J].天然气地球科学,2013,24(3):450-455.]
[20]Hou Yuguang,He Sheng,Yi Jizheng,et al.Effect of pore structure on methane sorption capacity of shales[J].Petroleum Exploration and Development,2014,41(2):248-256.[侯宇光,何生,易积正,,等.页岩孔隙结构对甲烷吸附能力的影响[J].石油勘探与开发,2014,41(2):248-256.]
[21]Kang Yili,Chen Defei,Li Xiangchen.Effect of fracturing fluid treatment on pore structure of coal[J].Journal of China University of Petroleum,2014(5):102-108.[康毅力,陈德飞,李相臣.压裂液处理对煤岩孔隙结构的影响[J].中国石油大学学报:自然科学版,2014(5):102-108.]
[22]Tong Hongshu,Hu Baolin.Research on the fractal characteristics of pore of coal reservoirs tested with cryogenic nitrogen adsorption in the ordosbasin[J].Coal Technology,2004,23(7):1-3.[童宏树,胡宝林.鄂尔多斯盆地煤储层低温氮吸附孔隙分形特征研究[J].煤炭技术,2004,23(7):1-3.]
[23]Yang Feng,Ning Zhengfu,Wang Qing,et al.Thermodynamic analysis of methane adsorption on gas shale[J].Journal of Central South University:Science and Technology,2014(8):2871-2877.[杨峰,宁正福,王庆,等.甲烷在页岩上吸附的热力学[J].中南大学学报:自然科学版,2014(8):2871-2877.]
[24]Ji Liming,Luo Peng.Effect of sample size on volumetric determination of methane adsorption in clayminerals[J].Natural Gas Geoscience,2012,23(3):535-540.[吉利明,罗鹏.样品粒度对黏土矿物甲烷吸附容量测定的影响[J].天然气地球科学,2012,23(3):535-540.]

[1] 周立宏,蒲秀刚,肖敦清,李洪香,官全胜,林伶,曲宁. 渤海湾盆地沧东凹陷孔二段页岩油形成条件及富集主控因素[J]. 天然气地球科学, 2018, 29(9): 1323-1332.
[2] 赵文韬,荆铁亚,吴斌,周游,熊鑫. 断裂对页岩气保存条件的影响机制——以渝东南地区五峰组—龙马溪组为例[J]. 天然气地球科学, 2018, 29(9): 1333-1344.
[3] 夏鹏,王甘露,曾凡桂,牟雨亮,张昊天,刘杰刚. 黔北地区牛蹄塘组高—过成熟页岩气富氮特征及机理探讨[J]. 天然气地球科学, 2018, 29(9): 1345-1355.
[4] 康毅力,豆联栋,游利军,陈强,程秋洋. 富有机质页岩增产改造氧化液浸泡离子溶出行为[J]. 天然气地球科学, 2018, 29(7): 990-996.
[5] 曾凡辉,王小魏,郭建春,郑继刚,李亚州,向建华. 基于连续拟稳定法的页岩气体积压裂水平井产量计算[J]. 天然气地球科学, 2018, 29(7): 1051-1059.
[6] 朱维耀,马东旭. 页岩储层有效应力特征及其对产能的影响[J]. 天然气地球科学, 2018, 29(6): 845-852.
[7] 余川,曾春林,周洵,聂海宽,余忠樯. 大巴山冲断带下寒武统页岩气构造保存单元划分及分区评价[J]. 天然气地球科学, 2018, 29(6): 853-865.
[8] 王香增,张丽霞,姜呈馥,尹锦涛,高潮,孙建博,尹娜,薛莲花. 鄂尔多斯盆地差异抬升对长7页岩孔隙的影响——以东南部甘泉地区和南部渭北隆起地区为例[J]. 天然气地球科学, 2018, 29(5): 597-605.
[9] 邱 振,邹才能,李熙喆,王红岩,董大忠,卢斌,周尚文,施振生,冯子齐,张梦琪. 论笔石对页岩气源储的贡献——以华南地区五峰组—龙马溪组笔石页岩为例[J]. 天然气地球科学, 2018, 29(5): 606-615.
[10] 汪道兵,葛洪魁,宇波,文东升,周珺,韩东旭,刘露. 页岩弹性模量非均质性对地应力及其损伤的影响[J]. 天然气地球科学, 2018, 29(5): 632-643.
[11] 龙胜祥,冯动军,李凤霞,杜伟. 四川盆地南部深层海相页岩气勘探开发前景[J]. 天然气地球科学, 2018, 29(4): 443-451.
[12] 贺领兄,宋维刚,安生婷,徐永锋,沈娟,路超,王军. 青海东昆仑地区八宝山盆地烃源岩有机地球化学特征与页岩气勘探前景[J]. 天然气地球科学, 2018, 29(4): 538-549.
[13] 邢 舟,曹高社,毕景豪,周新桂,张交东. 南华北盆地禹州地区ZK0606钻孔上古生界煤系烃源岩评价[J]. 天然气地球科学, 2018, 29(4): 518-528.
[14] 林伯韬,陈渊,陈勉,金衍,蒋峥. 多峰孔径分布拟合模型在页岩孔隙结构分析中的应用[J]. 天然气地球科学, 2018, 29(3): 397-403.
[15] 曹涛涛,邓模,宋之光,刘光祥,黄俨然,Andrew Stefan Hursthouse. 黄铁矿对页岩油气富集成藏影响研究[J]. 天然气地球科学, 2018, 29(3): 404-414.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!