天然气地球科学

• 天然气勘探 • 上一篇    

裂缝性碳酸盐岩气藏相控条件下测井裂缝解释——以土库曼斯坦阿姆河右岸为例

徐芳,张文旗,张兴阳,邢玉忠,程木伟,田雨   

  1. 中国石油勘探开发研究院,北京 100083
  • 收稿日期:2016-03-25 修回日期:2016-04-28 出版日期:2016-08-10 发布日期:2016-08-10
  • 作者简介:徐芳(1983-),女,山东新泰人,工程师,博士,主要从事油气田开发地质研究. E-mail:xufang840103@163.com.
  • 基金资助:
    国家科技重大专项“大型油气田及煤层气开发”的16号项目“阿姆河右岸中区天然气开发示范工程”(编号:2011ZX05059) 资助.

Sedimentary facies controlled fracture quantitative interpretation of fractured carbonate gas reservoirs:A case study of the right bank of Amu Darya,Turkmenistan

Xu Fang,Zhang Wen-qi,Zhang Xing-yang,Xing Yu-zhong,Cheng Mu-wei,Tian Yu   

  1. Research Institute of Petroleum Exploration and Development,Beijing 100083,China
  • Received:2016-03-25 Revised:2016-04-28 Online:2016-08-10 Published:2016-08-10

摘要: 土库曼斯坦阿姆河右岸为盐下中上侏罗统低能缓坡礁滩型碳酸盐岩储层,储层基质物性差,裂缝发育。单井产能与裂缝发育程度密切相关,准确评价裂缝发育程度是产能建设过程中极为重要的一环。通过对研究区不同倾角裂缝有效性进行分析,认为高角度裂缝的有效性较高,对生产起主导作用;根据岩心观察统计、成像测井裂缝解释及常规测井响应特征分析,认为裂缝发育程度与双侧向幅度差大小及总孔隙度与声波孔隙度之差呈线性正相关,但不同岩相裂缝发育程度的测井响应特征存在差异;通过开展从单变量到相控_单变量的常规测井裂缝评价研究,最终采用“相控”多元线性回归方法,实现了不同岩相裂缝密度定量解释,形成了相控_多变量裂缝发育程度定量解释方法。岩心资料、测试资料及井漏情况表明解释结果较为可靠,可应用于相似类型储层裂缝发育程度常规测井定量评价。

关键词: 碳酸盐岩, 缓坡礁滩储层, 裂缝发育程度, 常规测井, 定量解释

Abstract: It is low-energy ramp reef-shoal carbonate reservoir of sub-salt Middle-Upper Jurassic in central Amu Darya right bank block,with poor matrix properties and well-developed fractures.Single well deliverability is closely related to the fracture intensity.Accurate evaluation of fracture intensity is very important for the deliverability construction.The fractures in this area are of different angles.And the high angle fractures are more effective.The features of imaging logs and conventional logs are studied.The relationships between high angle fracture intensity and single log are set up.The intensity is linearly and positively relevant to the ratio of deep and shallow lateral resistivity and the difference of density and acoustic porosity.But the fracture intensity is different in different microfacies.Therefore,based on the microfacies,the models for fractures of different microfacies are set up with multiple linear regression method.The models are proved reliable with coring data,test data and lost circulations.This method can be used for similar fractured carbonate reservoir.

Key words: Carbonate, Ramp reef-shoal reservoirs, Fracture intensity, Conventional logging, Quantitative interpretation

中图分类号: 

  • TE122.2+3

[1]Xu Wenli,Zheng Rongcai,Fei Huaiyi,et al.The sedimentary facies of Callovian-Oxfordian Stage in Amu Darya Basin,Turkmenistan[J].Geology in China,2012,39(4):954-963.[徐文礼,郑荣才,费怀义,等.土库曼斯坦阿姆河盆地卡洛夫—牛津阶沉积相特征[J].中国地质,2012,39(4):954-963.]
[2]Fei Huaiyi,Xu Gang,Wang Qiang,et al.Characteristics of gas reservoirs in the Amu Darya Right Bank Block,Turkmenistan[J].Natural Gas Industry,2010,30(5):13-17.[费怀义,徐刚,王强,等.阿姆河右岸区块气藏特征[J].天然气工业,2010,30(5):13-17.]
[3]Zhao Junlong,Gong Zewen,Li Gan,et al.A review and perspective of identifying and evaluating the logging technology of fractured carbonate reservoir[J].Progress in Geophysics,2012,27(2):537-545.[赵军龙,巩泽文,李甘,等.碳酸盐岩裂缝性储层测井识别及评价技术综述与展望[J].地球物理学进展,2012,27(2):537-545.]
[4]Ye Tao,Jiang Youlu,Liu Hua,et al.Study on genetic types and logging identification of the fractures in Bonan Subsag[J].Journal of Xi’an Shiyou University:Natural Science Edition,2013,28(1):52-60.[叶涛,蒋有录,刘华,等.渤南洼陷裂缝成因类型及测井识别方法[J].西安石油大学学报:自然科学版,2013,28(1):52-60.]
[5]Xu Lei,Qi Jingshun,Luo Minggao,et al.Use multi-parameters to comprehensively identify fracture in volcanic rock[J].Natural Gas Exploration  &  Development,2009,32(1):21-24.[绪磊,齐井顺,罗明高,等.测井多参数综合识别火山岩裂缝[J].天然气勘探与开发,2009,32(1):21-24.]
[6]Fan Cunhui,Zhou Kun,Qin Qirong,et al.Comprehensive assessment of fractures in the volcanic basement buried hill reservoirs:A case study of volcanic reservoir in 4-2 region of Karamay Oilfield[J].Natural Gas Geoscience,2014,25(12):1925-1931.[范存辉,周坤,秦启荣,等.基底潜山型火山岩储层裂缝综合评价——以克拉玛依油田四2区火山岩为例[J].天然气地球科学,2014,25(12):1925-1931.]
[7]He Hujun,Bi Jianxia,Zeng Daqian,et al.Fracture identification in conventional log through KNN classification algorithm based on slope of logging curve[J].Sino Global  Energy,2014,19(1):70-74.[何胡军,毕建霞,曾大潜,等.基于测井曲线斜率的KNN 分类算法常规测井裂缝识别———以普光气田礁滩相储层为例[J].中外能源,2014,19(1):70-74.]
[8]Shi Guanghui,Li Yongquan,Wang Lu.Research on fracture identification based on the variable scale fractal technique and conventional logging data[J].Petroleum Instruments,2013,27(1):49-51.[师光辉,李永权,王鲁.结合变尺度分析方法和常规测井资料识别裂缝的发育[J].石油仪器,2013,27(1):49-51.]
[9]Xiao Dazhi.Research on crack identification based on wavelet multi- scale analysis of conventional logging data[J].Chinese Journal of Engineering Geophysics,2011,8(2):216-221.[肖大志.基于常规测井资料小波多尺度分析的裂缝识别方法[J].工程地球物理学报,2011,8(2):216-221.]
[10]Deng Shaogui,Wang Xiaochang,Fan Yiren.Response of dual laterolog to fractures in fractured carbonate formation and its interpretation[J].Earth Science Journal of China University of Geosciences,2006,31(6):846-850.[邓少贵,王晓畅,范宜仁.裂缝性碳酸盐岩裂缝的双侧向测井响应特征及解释方法[J].中国地质大学学报,2006,31(6):846-850.]
[11]Qin Qirong,Huang Pinghui,Zhou Yuanzhi,et al.The application and research of the analyses of the whole diameter sample in the explanation of crack porosity:Taking the permian crack reservoir for example in the area of Bai 31,in the Karamay Oilfield[J].Natural Gas Geoscience,2005,16(5):637-640.[秦启荣,黄平辉,周远志,等.全直径样品分析在测井解释裂缝孔隙度中的应用研究——以克拉玛依油田百31井区二叠系油藏为例[J].天然气地球科学,2005,16(5):637-640.]
[12]Deng Mo,Qu Guoying,Cai Zhongxian.Fracture identification for carbonate reservoir by conventional well logging[J].Journal of Geology,2009,33(1):75-78.[邓模,瞿国英,蔡忠贤.常规测井方法识别碳酸盐岩储层裂缝[J].地质学刊,2009,33(1):75-78.]
[13]Liu Zhidi,Zhao Jingzhou.Recogniziong oil shale fracture of Chang 7 member in Ordos Basin using logging data[J].Natural Gas Geoscience,2014,25(2):259-265.[刘之的,赵靖舟.鄂尔多斯盆地长7段油页岩裂缝测井定量识别[J].天然气地球科学,2014,25(2):259-265.]
[14]Ding Jianmin,Gao Liqing.The changeswith the depth of the horizontal stress and vertical stress of the earth’s crust[J].Earthquack,1981,2:46-48.[丁健民,高莉青.地壳水平应力与垂直应力随深度的变化[J].地震,1981,2:46-48.]
[15]Hu Zongquan.Description,Evaluation and Predication of Tight and Fractured Clastic Reservoirs[M].Beijing:Petroleum Industry Press,2005:39-40.[胡宗全.致密裂缝性碎屑岩储层描述、评价与预测[M].北京:石油工业出版社,2005:39-40.]
[16]Xu Jianliang,Cheng Xubin,Wu Lei,et al.Structural evolution and hydrocarbon pool ing condi tions in the Amu Darya Right Bank Block,Turkmenistan[J].Natural Gas Industry,2010,30(5):18-20.[徐剑良,程绪彬,吴蕾,等.阿姆河右岸区块构造演化与成藏条件[J].天然气工业,2010,30(5):18-20.]
[17]Xu Wenli,Zheng Rongcai,Fei Huaiyi,et al.Characteristics and timing of fractures in the Callovian-Oxfordian boundary of the right bank of the Amu Darya river,Turkmenistan[J].Natural Gas Industry,2012,32(4):33-38.[徐文礼,郑荣才,费怀义,等.土库曼斯坦阿姆河右岸卡洛夫—牛津阶裂缝特征及形成期次[J].天然气工业,2012,32(4):33-38.]
[18]Yang Shaochun,Qi Luning,Li Shuanbao.Fracture types,development phases and controlling factors of  Chengbei 20 buried hills in Chengdao area[J].Journal of China University of Petroleum,2012,36(5):1-5.[杨少春,齐陆宁,李拴豹.埕岛地区埕北20潜山带裂缝类型、发育期次及控制因素[J].中国石油大学学报:自然科学版,2012,36(5):1-5.]
[19]Yang Ling,Hu Ming.Controlling factors of  Archeozoic reservoir fractures development and hydrocarbon prospecting direction in Dongying Depression[J].Special Oil and Gas Reservoirs,2010,17(2):35-38.[杨玲,胡明.东营凹陷太古界储层裂缝发育控制因素及油气勘探方向[J].特种油气藏,2010,17(2):35-38.]
[20]Yang Yi,Zhang Xiaoli,Chen Dong,et al.Types and major controlling factors of fractures in Honggouzi structure of the western Qaidam Basin[J].Journal of Oil and Gas Technology,2010,32(2):284-287.[杨懿,张小莉,陈冬,等.柴西地区红沟子构造裂缝类型特征及控制因素[J].石油天然气学报,2010,32(2):284-287.]
[21]Ding Ciqian.Geophysics Well Loggin[M].Beijing:China University of Petroleum Press,2003:245-250.[丁次乾.矿场地球物理[M].北京:中国石油大学出版社,2003:245-250.]

[1] 吴因业, 吕佳蕾, 方向, 杨智, 王岚, 马达德, 陶士振. 湖相碳酸盐岩—混积岩储层有利相带分析——以柴达木盆地古近系为例[J]. 天然气地球科学, 2019, 30(8): 1150-1157.
[2] 王勇飞, 赵向原, 刘成川. 川东北元坝地区长兴组礁滩相储层裂缝特征及主控因素[J]. 天然气地球科学, 2019, 30(7): 973-981.
[3] 李长海, 赵伦, 李伟强, 李建新, 丁宇韬, 李昂, 祁永平. 碳酸盐岩缝合线研究进展及对油气开发的意义[J]. 天然气地球科学, 2019, 30(4): 493-502.
[4] 文开丰, 杨国平, 高君微, 郝玉鸿, 白慧, 张银德, 叶葱林, 孙龙. 鄂尔多斯盆地榆林气田马五 1+2气藏不同地质储量计算及采收率评价[J]. 天然气地球科学, 2019, 30(2): 266-273.
[5] 王清龙, 林畅松, 李浩, 韩剑发, 孙彦达, 何海全. 塔里木盆地西北缘中下奥陶统碳酸盐岩沉积微相特征及演化[J]. 天然气地球科学, 2018, 29(9): 1274-1288.
[6] 吕正祥, 王先东, 吴家洋, 卿元华. 渤海海域中部古近系湖相碳酸盐岩储层成岩演化特征[J]. 天然气地球科学, 2018, 29(7): 921-931.
[7] 王珊, 曹颖辉, 杜德道, 王石, 李洪辉, 董洪奎, 严威, 白莹. 塔里木盆地柯坪—巴楚地区肖尔布拉克组储层特征与主控因素[J]. 天然气地球科学, 2018, 29(6): 784-795.
[8] 史文洋,姚约东,程时清,石志良,高敏. 裂缝性低渗透碳酸盐岩储层酸压改造油井动态压力特征[J]. 天然气地球科学, 2018, 29(4): 586-596.
[9] 张永庶,伍坤宇,姜营海,王鹏,蔡智洪,高发润,谭武林,高树芳,鲜本忠. 柴达木盆地英西深层碳酸盐岩油气藏地质特征[J]. 天然气地球科学, 2018, 29(3): 358-369.
[10] 孟凡坤,雷群,徐伟,何东博,闫海军,邓惠. 应力敏感碳酸盐岩复合气藏生产动态特征分析[J]. 天然气地球科学, 2018, 29(3): 429-436.
[11] 魏新善,魏柳斌,任军峰,蔡郑红,周黎霞. 鄂尔多斯盆地下古生界风化壳气藏差异性[J]. 天然气地球科学, 2018, 29(2): 178-188.
[12] 孙东, 石小茜, 王振卿, 陈利新, 王靖, 孙甲庆, 代冬冬, 房启飞. 塔里木盆地哈拉哈塘地区二叠系火成岩体对下伏地层地震成像影响[J]. 天然气地球科学, 2018, 29(12): 1781-1787.
[13] 田瀚, 唐松, 张建勇, 辛勇光, 王鑫, 李文正. 川西地区中三叠统雷口坡组储层特征及其形成条件[J]. 天然气地球科学, 2018, 29(11): 1585-1594.
[14] 贾锁刚, 梁宏波, 万有余, 胥云, 翁定为, 刘世铎. 柴达木盆地英西地区缝洞型碳酸盐岩储层体积改造技术研究与应用[J]. 天然气地球科学, 2018, 29(11): 1619-1626.
[15] 胡安平,沈安江,潘立银,王永生,李娴静,韦东晓. 二元同位素在碳酸盐岩储层研究中的作用[J]. 天然气地球科学, 2018, 29(1): 17-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 任以发. 微量烃分析在井中化探录井中的应用[J]. 天然气地球科学, 2005, 16(1): 88 -92 .
[2] 郑建京;吉利明;孟仟祥;. 准噶尔盆地天然气地球化学特征及聚气条件的讨论[J]. 天然气地球科学, 2000, 11(4-5): 17 -21 .
[3] Seewald J S;Benitez-Netson B C;Whelan J K(美国);刘全有(译). 天然气形成与组成的实验和理论因素[J]. 天然气地球科学, 2000, 11(4-5): 30 -44 .
[4] 张延敏, . 1996~1999年世界天然气产量[J]. 天然气地球科学, 2000, 11(3): 44 -45 .
[5] 陈建阳,张志杰,于兴河 . AVO技术在水合物研究中的应用及应注意的问题[J]. 天然气地球科学, 2005, 16(1): 123 -126 .
[6] 李美俊;卢鸿;王铁冠;吴炜强;刘菊;高黎惠;. 北部湾盆地福山凹陷岩浆活动与CO2 成藏的关系[J]. 天然气地球科学, 2006, 17(1): 55 -59 .
[7] 倪金龙;夏斌;. 济阳坳陷坡折带组合类型及石油地质意义[J]. 天然气地球科学, 2006, 17(1): 64 -68 .
[8] 施立志;林铁锋;王震亮;王卓卓;姚勇;. 库车坳陷下白垩统天然气运聚系统与油气运移研究[J]. 天然气地球科学, 2006, 17(1): 78 -83 .
[9] 王茹;. 胜坨油田两期成藏地球化学特征及成藏过程分析[J]. 天然气地球科学, 2006, 17(1): 133 -136 .
[10] 程同锦,朱怀平,陈浙春. 孔雀1井剖面地球化学特征与烃类的垂向运移[J]. 天然气地球科学, 2006, 17(2): 148 -152 .